NEP CBCS 2023-24

F.Y.B.Sc

Mathematics

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

> Three Year B.Sc. Major Degree Program in Mathematics (Faculty of Science & Technology)

> > Syllabus of

F.Y. B.Sc. Mathematics

Choice Based Credit System Syllabus To be implemented from the academic year 2023-2024 F. Y. B. Sc.

Mathematics

Title of the Program: B. Sc (Mathematics)

Preamble:

Department of Mathematics, Abeda Inamdar Senior College is implementing the first syllabus of B.Sc. under NEP from June 2023. Taking into consideration the rapid changes in Science and Technology and new approaches in different areas of Mathematics and related subjects, the Board of studies in Mathematics has prepared the syllabus of B.Sc Semester-I and Semester-II (w.e.f. 2023-24) Mathematics course under the Choice Based Credit System (CBCS). The model curriculum developed by U.G.C. is used as a guideline for the present syllabus.

Aims:

Sr. No.	Aims
1.	Give the students a sufficient knowledge of fundamental principles, methods, and a
	clear perception of innumerous powers of mathematical ideas and tools and know-
	how to use them by modeling, solving, and interpreting.
2.	Reflecting the broad nature of the subject and developing mathematical tools for
	continuing further study in various fields of science and technology.
3.	Enhancing student's overall development and to equip them with mathematical
	modeling abilities, problem solving skills, creative talent, and power of
	communication necessary for various kinds of employment.
4.	Enabling students to develop a positive attitude towards mathematics as an
	interesting and valuable subject of study.

Objectives:

Sr. No.	Objectives
1.	A student should be able to recall basic facts about mathematics and should be able
	to display knowledge of conventions such as notations and terminology, recognize
	basic geometrical figures and graphical displays and state important facts resulting
	from their studies.
2.	A student should get a relational understanding of mathematical concepts and
	concerned structures and should be able to follow the patterns involved in
	mathematical reasoning.
3.	A student should get adequate exposure to global and local concerns that
	explore many aspects of Mathematical Sciences.
4.	A student should get adequate exposure to global and local concerns that explore
	many aspects of Mathematical Sciences.
5.	A student should be able to apply their skills and knowledge that is, translate
	information presented verbally into mathematical form, select and use appropriate
	mathematical formulae or techniques to process the information and draw the
	relevant conclusion.
6.	A student should be made aware of the history of mathematics and hence of its
	past, present, and future role as part of our culture.

Programme Outcome:

Sr. No.	Outcome
1.	The mathematical maturity of students in their current and future courses shall develop.
2.	The student develops theoretical, applied, and computational skills.
3.	The student gains confidence in proving theorems and solving problems.

Offered as	Major
Course/ Paper Title	Foundation of Mathematics
Course Code	23SBMT11MM
Semester	Ι
No. of Credits	2

Unit No	Title with Contents	
		Lectures
Unit I	Sets Relations and Functions	08
	1. Basic terminologies of sets, Operations on sets, Family of sets,	2
	Power sets, Cartesian product of sets.	
	2. Basic definitions of functions, One-one, onto functions and	
	bijections, Composition of functions, Inverse of a function,	3
	Image of subsets under functions, Inverse image of subsets	
	under functions. (Excluding theorem only examples)	
	3. Relations on sets, Types of relations, Equivalence relations,	3
	Equivalence classes, and partitions of sets.	
Unit II	Divisibility Theory in the Integers	07
	1. Basic terminologies of sets, Operations on sets, Family of sets,	3
	Power sets, Cartesian product of sets.	
	2. The Division Algorithm, The Greatest Common Divisor, The	
	Euclidean Algorithm.	4
Unit III	Primes and the theory of Congruence	08
	1. The Fundamental Theorem of Arithmetic: Prime Numbers,	3
	Euclid's Lemma.	
	2. Basic Properties of Congruence.	2
	3. Fermat's Theorem.	2
Unit IV	Complex Numbers	07
	1. Sums and Products, Basic Algebraic Properties, Moduli,	4
	Complex Conjugates, Exponential Form, Products and	

Quotients, De- Moivre's theorem	
2. Roots of Complex Numbers: The n th roots of unity.	2
3. Regions in Complex Plane	1

- A Foundation Course in Mathematics, Ajit Kumar, S. Kumaresan and Bhaba KumarSarma, Narosa Publication House. Unit I: Chapter 2: Sec. 2.1 to 2.5, Chapter 3: Sec. 3.1 to 3.6, Chapter 4: Sec. 4.1 to 4.4.
 Elementary Number Theory, David M. Burton, Tata McGraw Hill, Sixth Edition Unit II: Chapter 1: Sec. 1. 1 Chapter 2: Sec. 2.2 to 2.4. Unit III: Chapter 3: Sec. 3.1, Chapter 4: Sec. 4.1, 4.2, Chapter 5: Sec. 5.2.
 Complex Variables and Applications, James Ward Brown and Ruel V.
- Churchill, Mc-GrawHill, Seventh Edition. Unit IV: Chapter 1: Sec 1 to 10.

Reference Books:

- 1. Textbook of Algebra, S. K. Shah and S. C. Garg, Vikas Publishing House Pvt. Ltd. Edition2017.
- 2. Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and SonsInc, Fourth Ed.

Website:

1. https://www.youtube.com/watch?v=md5UCR7mcIY

Offered as	Major
Course/ Paper Title	Calculus-I
Course Code	23SBMT12MM
Semester	Ι
No. of Credits	2

Unit No	Title with Contents	No. of
		Lectures
Unit I	Real Numbers	08
	1. The Algebraic and Order properties of R: Algebraic properties	2
	of R, Order properties of R, Well-Ordering Property of	
	N.Arithmetic mean- Geometric mean inequality, Bernoulli's	
	inequality. (Revision: essential properties should be revised	
	with illustrative examples)	
	2. Absolute Value and the Real Line: Absolute value function	
	and its properties, triangle inequality and its consequences, a	2
	neighborhood of a point on a real line.	
	3. The Completeness Property of R: Definitions of Upper bound,	
	Lower bound, supremum, infimum of subsets of R,	2
	completeness property of R.	
	4. Applications of the Supremum Property: property and its	
	consequences, The density theorem (without proof).	2
Unit II	Sequences	07
	1. Sequences and Their Limits: Definition and examples of	2
	sequences of real numbers, Definition of the limit of sequence	
	and uniqueness of limit, Examples on the limit of a sequence.	
	2. Limits Theorems: Definition of bounded sequence, Every	
	convergent sequence is bounded, Algebra of limits.	2
	3. Monotone Sequences: Definition and examples of monotone	
	sequences, Monotone convergence theorem, and examples	1
	4. Subsequences and Bolzano -Weierstrass Theorem: Definition	

	of subsequence and examples, Divergence criteria, Monotone	1
	Subsequence theorem (without proof), Bolzano-Weierstrass	
	theorem (first proof).	
	5. Cauchy Criterion: Definition and examples.	1
Unit III	Limits	08
	1. Functions and their Graphs: Functions, domain and range,	2
	graphs of functions, representing a function numerically,	
	and Vertical line test, Piecewise defined functions,	
	increasing and decreasing functions, even and odd	
	functions symmetry, common functions.	
	2. Limits of Functions: Definition of cluster point and	
	examples, the definition of the limit of a function, the	2
	sequential criterion for limits, divergence criteria.	
	3. Limit Theorems: Algebra of limits (proofs using sequential	
	criterion), Squeeze theorem.	2
	4. Some extension of limit concepts: One-sided limits, infinite	
	limits (without proof).	2
Unit IV	Continuity	07
	1. Continuous Functions: Definition of continuous function at a	4
	point, the sequential criterion for continuity, Divergence	
	criterion, combination of continuous functions.	
	2. Continuous Functions on Intervals: Properties of continuous	
	functions on an interval, Boundednesstheorem (without proof),	
	The minimum-maximum theorem (without proof), Location of	3
	root theorem (Without proof), Bolzano's intermediate value	
	theorem. Continuous function maps closed boundedinterval to	
	closed bounded interval, Preservation of interval theorem.	

1. Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and SonsInc,Fourth Edition.

Unit I: Chapter 2: Sec 2.1 (2.1.1 to 2.1.13), Sec. 2.2 (2.2.1 to 2.2.9), Sec. 2.3,

Sec. 2.4 (2.4.1, 2.4.3 to 2.4.6, 2.4.8, 2.4.9).

Unit II: Chapter 3: Sec. 3.1 (3.1.1 to 3.1.7, 3.1.10, 3.1.11), Sec. 3.2 (3.2.1 to

3.2.11), Sec. 3.3 (3.3.1, 3.3.4), Sec. 3.4 (3.4.1 to 3.4.3, 3.4.5 to 3.4.8), Sec. 3.5.

Unit III: Chapter 4: Sec. 4.1 (4.1.1, 4.1.3 to 4.1.9), Sec. 4.2 (4.2.1 to 4.2.8), Sec.

4.3 (4.3.1 to 4.3.9).

Unit IV: Chapter 5: Sec. 5.1, Sec. 5.2, Sec 5.3 (5.3.1 to 5.3.5, 5.3.7 to 5.3.10).

Thomas'Calculus, Fourteenth edition, Pearson Publication.
 Unit III: Chapter 1: Sec. 1.1.

Reference Books:

- 1. Introduction to Real analysis, William F.Trench, Free edition, 2010.
- 2. Calculus of a single variable Ron Larson, Bruce Edwards, tenth edition.

Brooke Cole. Cengage Learning

- 3. Elementary Analysis, The Theory of Calculus, Kenneth A. Ross, Springer Publication, second edition.
- 4. Calculus and its Applications, Marvin L. Bittinger, David J. Ellenbogen andScott A. Surgent, Addison Wesley, tenth edition

Website: 1. https://www.youtube.com/watch?v=fCzS8y4SBtE

2. <u>https://www.youtube.com/watch?v=wzFc9us78sM</u>

Offered as	Major
Course/ Paper Title	Practical Course based on 23SBMT11MM and
	23SBMT12MM
Course Code	23SBMT13MM
Semester	Ι
No. of Credits	2

Practical	Title	No. of
number		Practical
	Practicals based on 23SBMT11MM	
Ι	Sets Relations and Functions-I	1
II	Sets Relations and Functions-II	1
III	Divisibility	1
IV	Congruence	1
V	Divisibility and congruence	1
VI	Complex Numbers	1
	Practicals based on 23SBMT12MM	
Ι	Real Numbers	1
II	Sequences-I	1
III	Sequences-II	1
IV	Limits	1
V	Continuity	1
VI	Limits and Continuity	1

Offered as	Major
Course/ Paper Title	Co-ordinate Geometry
Course Code	23SBMT21MM
Semester	П
No. of Credits	2

Unit No	Title with Contents	No. of
		Lectures
Unit I	Analytical Geometry of Two Dimension	06
	1. Change of axes: translation and rotation.	2
	2. Conic Sections: General equation of second degree in two	2
	variables	
	3. Reduction to standard form, the center of conic, nature of conic.	
		2
Unit II	Planes	10
	1. Direction cosines and direction ratios, Equation of	5
	plane,Normal form, Transform to the normal form,	
	Plane passingthrough three non-collinear points,	
	Intercept form, Angle between two planes.	
	2. Distance of a point from a plane, Distance between	
	parallel planes, Systems of planes, two sides of	5
	planes, Bisector planes.	
Unit III	Lines in three dimension	08
	1. Equations of a line in Symmetric and unsymmetrical forms,	4
	Line passing through two points, Angle between a line and a	
	plane.	
	2. Perpendicular distance of a point from a	
	plane, Condition for two lines to be	4
	coplanar(without proof).	
Unit IV	Sphere	06
	1. Equation of a sphere in different forms, plane section of a	2
	sphere.	
	2. Equation of a circle, sphere through a given circle	
	3. Intersection of a sphere and a line, Equation of tangent planeto	2
	a sphere.	2

1. Analytic Geometry in Two and Three Dimensions: Von Steuben.

Unit I: Chapter 8: Sec, 8.4.

2. Analytical Solid Geometry: Shantinarayan; S. Chand and Company Ltd, New Delhi,1998.
Unit II: Chapter 1: Sec. 1.6, 1.7, Chapter 2: Sec. 2.1 to 2.7.
Unit III: Chapter 3: Sec. 3.1 to 3.4, 3.7.Unit IV: Chapter 6: Sec. 6.1 to 6.6.

Reference Book:

 P.K.Jain and Khalil Ahmad, A Text Book of Analytical Geometry of ThreeDimensions, Wiley Eastern Ltd. 1999.

Website:

1. https://www.youtube.com/watch?v=HyWagR_

Offered as	Major
Course/ Paper Title	Calculus-II
Course Code	23SBMT22MM
Semester	П
No. of Credits	2

Unit No	Title with Contents	No. of
		Lectures
Unit I	Differentiation	07
	1. The Derivatives: Definition of the derivative of a function	4
	at a point, every differentiable function is continuous,	
	Rules of differentiation, Cara theodary's theorem (without	
	proof), The chain rule, Derivative of inverse function	
	(without proof, only examples).	
	2. The Mean Value Theorems: Interior extremum theorem,	
	MeanValue theorems, and their Consequences, Intervals of	
	increasing and decreasing of a function, first derivative test	3
	for extrema	
Unit II	L'Hospital Rule and Successive Differentiation	07
	1. L`Hospital Rule: Indeterminate forms, L'Hospital	3
	Rules(without proof).	
	2. Taylor's theorem: Taylor's theorem and Maclaurin's theorem	3
	with Lagrange's form of the remainder (Without proof).	
	3. Successive Differentiation: The nthderivative and Leibnitz	_
	theorem for Successive differentiation.	1
Unit III	Ordinary Differential Equations	08
	1. Linear first order equations.	3
	2. Separable equations.	3
	3. Existence and Uniqueness of solutions of nonlinear equations.	2
Unit IV	Exact Differential Equations	08

1. Transformation of nonlinear equations to separable equations.	2
2. Exact differential equations.	2
3.Integrating factors	4

- Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and Sons,Inc.,Fourth Edition.
 Unit I: Chapter 6: Sec. 6.1(6.1.1 to 6.1.8), Sec 6.2(6.2.1 to 6.2.8).
 Unit II: Chapter 6: Sec 6.3(6.3.1 to 6.3.7), Sec 6.4(6.4.1 to 6.4.3).
- Differential Calculus by Shanti Narayan, Tenth Revised Edition.
 Unit II: Chapter 5: Sec. 5.1 to 5.6.
- Elementary Differential equations, William F. Trench, E-book (Free download) Unit III: Chapter 2: Sec 2.1 to 2.3. Unit IV: Chapter 2: Sec 2.4 to 2.6.

Reference Books:

- 1. Introduction to Real analysis, William F. Trench, Free edition, 2010.
- 2. Calculus of a single variable Ron Larson, Bruce Edwards, tenth edition.
- 3. Elementary Analysis, The Theory of Calculus, Kenneth A. Ross, SpringerPublication, second edition.
- 4. Calculus and its Applications, Marvin L. Bittinger, David J. Ellenbogen andScott A. Surgent, Addison Wesley, tenth edition.
- 5. Ordinary and Partial Differential Equations, M.D. Raisingania, S.ChandAnd Company,2009.

Website:

- 1. https://www.youtube.com/watch?v=FvYC5gB89Kc
- 2. https://www.youtube.com/watch?v=Im242eBqaxw

Offered as	Major
Course/ Paper Title	Practical Course based on 23SBMT21MM and
	23SBMT22MM
Course Code	23SBMT23MM
Semester	П
No. of Credits	2

Practical	Title	No. of
number		Practical
	Practicals based on 23SBMT21MM	
Ι	Analytical Geometry of Two Dimension	1
II	Planes	1
III	Analytical Geometry of Two Dimension and Planes	1
IV	Lines in three dimension	1
V	Sphere	1
VI	Line in three dimensions and Sphere	1
	Practicals based on 23SBMT22MM	
Ι	Differentiation	1
II	L'Hospital Rule and Successive and Differentiation	1
III	Differentiation, L'Hospital Rule and Successive and	1
	Differentiation	
IV	Ordinary Differential Equations	1
V	Exact Differential Equations	1
VI	Ordinary Differential Equations and Exact Differential Equations	1

Offered as	Vocational Skill Course
Course/ Paper Title	LaTeX for Scientific Writing
Course Code	23SBMT11VS
Semester	Ι
No. of Credits	2

Unit No	Title with Contents	No. of
	The with Contents	Lectures
Unit I	Introduction to LaTeX	6
	1. Definition and application of LaTeX.	1
	2. Preparation and Compilation of LaTeX input file.	2
	3. LaTeX Syntax.	2
	4. Keyboard Characters in LaTeX.	1
Unit II	Formatting Words, Lines and Paragraphs	8
	1. Text and Math mode fonts.	1
	2. Emphasized and colored font.	1
	3. Sectional unit.	1
	4. Labeling and referring numbered item.	1
	5. Text alignment and quoted text.	1
	6. New lines and paragraphs.	1
	7. Creating and filling blank spaces.	1
	8. Producing dashes with text.	1
Unit III	Listing and Tabbing Text	8
	1. Listing text.	4
	2. Tabbing text through the tabbing environment.	4
Unit IV	Table Preparation	14
	1. Table through the tabular environment.	2
	2. Table through the tabularx environment.	2
	3. Vertical positioning of tables.	2
	4 Sideways (rotated) text in table.	2
	5 Adjusting column width in table.	2
	6 Additional provision for customizing text in table.	2
	7 Merging rows and columns in table.	2

1. LaTeX in 24 Hours, A practical guide for scientific writing, Dilip Datta, Springer International Publishing, 2017.

Unit I: Chapter 1: Sec. 1.1 to 1.6.

Unit II: Chapter 2: Sec. 2.1 to 2.4, Chapter 3; 3.1 to 3.7.

Unit III: Chapter 6: Sec. 6.1, 6.2.

Unit IV: Chapter 7: Sec. 7.1 to 7.7

Reference books:

- 1. LaTeX, A Document Preparation System, User's Guide and Reference Manual, Leslie Lamport, Addison-Wesley Publishing Company, Inc., 1994.
- 2. LaTeX Beginner's Guide, Stefan Kottwitz, Packt Publishing Ltd, 2011.
- 3. LaTeX and Friends, M.R.C. van Dongen, Springer-Verlag Berlin Heidelberg ,2012.

Website:

1. <u>www.overleaf.com</u>

Practical	Title	No. of
number		Practical
	Practicals based on 23SBMT11VS	·
Ι	Introduction to LaTeX (Unit I)	1
II	Syntax and Keyboard characters in LaTeX (Unit I)	1
III	Fonts in LaTeX (Unit II)	1
IV	Sections, labelling and text alignment in LaTeX (Unit II)	1
V	New lines, paragraphs, blank space and dashes in LaTeX	1
	(Unit II)	
VI	Listing text –I (Unit III)	1
VII	Listing text –II (Unit III)	1
VIII	Tabbing text (Unit III)	1
IX	Table through tabular environment (Unit IV)	1
Х	Table through the tabularx environment (Unit IV)	1
XI	Positioning text in table (Unit IV)	1
XII	Customizing text in LaTeX (Unit IV)	1

Offered as	Skill Enhancement Course
Course/ Paper Title	Discrete Mathematics
Course Code	23SBMT11SE
Semester	Ι

No. of Credits	2
----------------	---

Unit No	Title with Contents	No. of
Unit No	Title with Contents	Lectures
Unit I	Set Theory, Logic and functions	10
	1. Propositional Logic.	2
	2. Propositional Equivalences.	2
	3. Sets.	2
	4. Set Operations.	2
	5. Functions.	2
Unit II	Induction and Counting	10
	1. Mathematical Induction	2
	2. Strong Mathematical Induction.	2
	3. The Basics of counting.	2
	4. The Pigeonhole Principle.	2
	5. Permutations and Combinations.	2
Unit III	Relations and Graphs	10
	1. Relations and their properties.	1
	2. n- ary Relations and their applications.	1
	3. Representing Relations.	1
	4. Closure of Relations	1
	5. Equivalence Relations.	1
	6. Partial Orderings.	1
	7. Graphs and Graph Models.	1
	8. Graph Terminology and Special Graphs.	1
	9. Representing Graphs.	1
	10. Connectivity.	1

 KENNETH H ROSEN (Indian Adaptation by Kamala Krithivasan), Discrete Mathematics and Its Application with Combinatorics and Graph Theory, Seventh Edition, Special Indian Edition, McGraw Hill Education (India) Private Limited

Unit I: Chapter 1: Sec. 1.1, 1.2.,

Chapter 2: Sec. 2.1, 2.2, 2.3.

Unit II: Chapter 7: Sec. 7.1, 7.2, 7.3, 7.4, 7.5, 7.6.

Chapter 8: Sec. 8.1, 8.2, 8.3 (Only Representing Graphs), 8.4.

Reference books:

1. Bernard Kolman, Robert C. Busy, Sharon Cutler Ross, Discrete Mathematical Structures, Sixth Edition, PHI Learning Private Limited.

Website:

1. <u>https://onlinecourses.nptel.ac.in/noc20_cs82/preview.</u>

Offered as	Indian Knowledge System
Course/ Paper Title	History and Development of Mathematics in India-I
Course Code	23SBMT11IK
Semester	Ι
No. of Credits	2

Unit No	Title with Contents	No. of
		Lectures
Unit I	Vedic Geometry	07
	1. The Sulbhsutra.	1
	2. The Theorem of the Diagonal.	1
	3. Rectilinear Figures and their Transformations.	1
	4. Circle from square: The direct construction.	2
	5. The inverse formula: Square from Circle.	2
Unit II	Decimal Numbers	06
	1. Numbers and Based Numbers	2
	2. The Place –value Principle and its Realizations.	2
	3. The Choice of a Base.	2
Unit III	The Mathematics of the Ganitapada	9

	1. General survey.	1
	2. The linear Diophantine Equation- Kuttaka method.	2
	3. The Invention of Trigonometry.	2
	4. The making of Sine Table.	2
	5. Aryabhata's Legacy.	2
Unit IV	From Bramhagupta to Bhaskara -II	08
	1. The Quadratic Diophantine Problem – Bhavana.	2
	2. Methods of Solution: Cakravala.	2
	3. Roots of Complex Numbers: The n th roots of unity.	2
	4. A Different Circle Geometry: Cyclic Quadrilaterals.	1
	5. The Kerala School and its impact	1

Reference Books:

- 1. Ganitpada Of Aryabhata I
- 2. Lilavati of Bhaskaracharya A Treatise of Mathematics of Vedic Tradition Translated by Krishnaji Shankara Patwardhan, Somashekhara Amrita Naimpally, Shyam Lal Singh
- 3. Indian Mathematics Engaging the World from Ancient to Modern Times, George Gheverghese Joseph

Website:

https://vigyanprasar.gov.in/digital-repository/posters/maths-indian-heritage/

Offered as	Minor
Course/ Paper Title	Foundation of Mathematics
Course Code	23SBMT21MN
Semester	II
No. of Credits	2

Unit No	Title with Contents	No. of Lectures
Unit I	Sets Relations and Functions	08

	1. Basic terminologies of sets, Operations on sets, Family of	2
	sets, Power sets, Cartesian product of sets.	
	2. Basic definitions of functions, One-one, onto functions and	
	bijections, Composition of functions, Inverse of a function,	3
	Image of subsets under functions, Inverse image of subsets	
	under functions. (Excluding theorem only examples).	
	3. Relations on sets, Types of relations, Equivalence relations,	3
	Equivalence classes, and partitions of sets.	
Unit II	Divisibility Theory in the Integers	07
	1. Basic terminologies of sets, Operations on sets, Family of	3
	sets, Power sets, Cartesian product of sets.	
	2. The Division Algorithm, The Greatest Common Divisor, The	
	Euclidean Algorithm.	4
Unit III	Primes and the theory of Congruence	08
	1. The Fundamental Theorem of Arithmetic: Prime Numbers,	3
	Euclid's Lemma.	
	2. Basic Properties of Congruence.	2
	3. Fermat's Theorem.	2
Unit IV	Complex Numbers	07
	1. Sums and Products, Basic Algebraic Properties, Moduli,	4
	Complex Conjugates, Exponential Form, Products and	
	Quotients, De- Moivre's theorem	
	2. Roots of Complex Numbers: The n th roots of unity.	2
	3. Regions in Complex Plane	1

- A Foundation Course in Mathematics, Ajit Kumar, S. Kumaresan and Bhaba KumarSarma, Narosa Publication House. Unit I: Chapter 2: Sec. 2.1 to 2.5, Chapter 3: Sec. 3.1 to 3.6, Chapter 4: Sec. 4.1 to 4.4.
- Elementary Number Theory, David M. Burton, Tata McGraw Hill, Sixth Edition Unit II: Chapter 1: Sec. 1. 1, Chapter 2: Sec. 2.2 to 2.4.
 Unit III: Chapter 3: Sec. 3.1, Chapter 4: Sec. 4.1, 4.2, Chapter 5: Sec. 5.2.

 Complex Variables and Applications, James Ward Brown and Ruel V. Churchill, Mc-Graw Hill, Seventh Edition. Unit IV: Chapter 1: Sec 1 to 10.

Reference Books:

- Textbook of Algebra, S. K. Shah and S. C. Garg, Vikas Publishing House Pvt. Ltd. Edition 2017.
- Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and Sons Inc, Fourth Ed.

Website:

- 1. https://www.youtube.com/watch?v=md5UCR7mcIY
- 2. https://www.youtube.com/watch?v=C2qIoHkhEuM&list=PLOzRYVm0a 5cpVtcdj_5SBEh6V QvC

Offered as	Minor
Course/ Paper Title	Calculus-I
Course Code	23SBMT22MN
Semester	П
No. of Credits	2

Unit No	Title with Contents	No. of Lectures
Unit I	Real Numbers	08
	1. The Algebraic and Order properties of R: Algebraic properties	2
	of R, Order properties of R, Well-Ordering Property of N	
	Arithmetic mean- Geometric mean inequality, Bernoulli's	
	inequality. (Revision: essential properties should be revised	
	with illustrative examples)	
	2. Absolute Value and the Real Line: Absolute value function	
	and its properties, triangle inequality and its consequences, a	2
	neighborhood of a point on a real line.	
	3. The Completeness Property of R: Definitions of Upper bound,	
	Lower bound, supremum, infimum of subsets of R,	2

	completeness property of R.	
	 Applications of the Supremum Property: property and its 	
	consequences, The density theorem (without proof).	2
Unit II	Sequences	07
	1. Sequences and Their Limits: Definition and examples of	2
	sequences of real numbers, Definition of the limit of sequence	_
	and uniqueness of limit, Examples on the limit of a sequence.	
	2. Limits Theorems: Definition of bounded sequence, Every	
	convergent sequence is bounded, Algebra of limits.	2
	3. Monotone Sequences: Definition and examples of monotone	
	sequences, Monotone convergence theorem, and examples	1
	4. Subsequences and Bolzano -Weierstrass Theorem: Definition	
	of subsequence and examples, Divergence criteria, Monotone	1
	Subsequence theorem (without proof), Bolzano –Weierstrass	
	theorem (first proof).	
	5. Cauchy Criterion: Definition and examples.	1
Unit III	Limits	08
	1. Functions and their Graphs: Functions, domain and range,	2
	graphs of functions, representing a function numerically,	
	and Vertical line test, Piecewise defined functions,	
	increasing and decreasing functions, even and odd	
	functions symmetry, common functions.	
	2. Limits of Functions: Definition of cluster point and	
	examples, the definition of the limit of a function, the	2
	sequential criterion for limits, divergence criteria.	
	3. Limit Theorems: Algebra of limits (proofs using sequential	
	criterion), Squeeze theorem.	2
	4. Some extension of limit concepts: One-sided limits, infinite	
	limits (without proof).	2

1. Continuous Functions: Definition of continuous function at a	4
point, the sequential criterion for continuity, Divergence	
criterion, combination of continuous functions.	
2. Continuous Functions on Intervals: Properties of continuous	
functions on an interval, Boundednesstheorem (without	
proof), The minimum-maximum theorem (without proof),	3
Location of root theorem (Without proof), Bolzano's	
intermediate value theorem. Continuous function maps closed	
boundedinterval to closed bounded interval, Preservation of	
interval theorem.	

 Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and SonsInc, Fourth Edition.

Unit I: Chapter 2: Sec 2.1 (2.1.1 to 2.1.13), Sec. 2.2 (2.2.1 to 2.2.9), Sec. 2.3,

Sec. 2.4 (2.4.1, 2.4.3 to 2.4.6, 2.4.8, 2.4.9).

Unit II: Chapter 3: Sec. 3.1 (3.1.1 to 3.1.7, 3.1.10, 3.1.11), Sec. 3.2 (3.2.1 to

3.2.11), Sec. 3.3 (3.3.1, 3.3.4), Sec. 3.4 (3.4.1 to 3.4.3, 3.4.5 to 3.4.8), Sec. 3.5

Unit III: Chapter 4: Sec. 4.1 (4.1.1, 4.1.3 to 4.1.9), Sec. 4.2 (4.2.1 to 4.2.8), Sec. 4.3 (4.3.1 to 4.3.9).

Unit IV: Chapter 5: Sec. 5.1, Sec. 5.2, Sec 5.3 (5.3.1 to 5.3.5, 5.3.7 to 5.3.10).

2. Thomas'Calculus, Fourteenth edition, Pearson Publication.

Unit III: Chapter 1: Sec. 1.1.

Reference Books:

- 1. Introduction to Real analysis, William F.Trench, Free edition, 2010.
- Calculus of a single variable Ron Larson, Bruce Edwards, tenth edition.
 Brooke Cole. Cengage Learning
- Elementary Analysis, The Theory of Calculus, Kenneth A. Ross, Springer Publication, second edition.
- Calculus and its Applications, Marvin L. Bittinger, David J. Ellenbogen andScott A. Surgent, Addison Wesley, tenth edition

Website: 1. <u>https://www.youtube.com/watch?v=fCzS8y4SBtE</u>

2. <u>https://www.youtube.com/watch?v=wzFc9us78sM</u>

Course/ Paper Title	Programming in Python-I
Course Code	23SBMT21VS
Semester	Π
No. of Credits	2

Unit No	Title with Contents	No. of
Unit No	The with Contents	Lectures
Unit I	Introduction to Python	06
	1. Installation of Python.	1
	2. Values and types: int, float and str, The Print Function: Print	1
	basics.	
	3. Variables: assignment statements, printing variable values,	
	types of variables.	1
	4. Mathematical Operators, operands and precedence: +, -, /, *,	
	**, % PEMDAS (Rules of precedence),	
	String operations: +: Concatenation, *: Repetition.	
	5. Boolean operator:	1
	5.1 Comparison operators: ==, ! =, >, =, <=	
	5.2 Logical operators: and, or, not.	
	6. Mathematical functions from math, cmath modules, random	1
	module, Keyboard input: input() statement	
	7. Calculus: Differentiation, Integration, Limit and Series	1
Unit II	Strings, Lists, Tuples	06
	1 Strings:	2
	1.1 Length (Len function).	
	1.2 String traversal: Using while statement, Using for	
	statement.	
	1.3 String slice	
	1.4 Comparison operators (>, <, =)	
	2 Lists:	2

	6.4 Three-dimensional Points and Lines.	1
	Control radial and angular grids.	
	and Types, Polar charts: Navigation Toolbar with polar plots,	
	Graphics), PyGraph viz. Decorate Graphs with Plot Styles	
	6.3Different formats of graphs, PyDotPlus (Scalable Vector	1
	6.2 Graphs plotting of functions.	1
	6.1 Installation of numpy, matplotlib packages.	1
Unit VI	2D and 3D Graphs	05
** •. *	3.4 User defined functions, Parameters and arguments.	~ =
	functions.	
	3.3 Composition of functions, Returning values from	
	3.2 Type conversion: int, float, str.	
	3.1 Calling functions: type, id.	
	3. Functions:	3
	while.	
	2. Looping statements such as while, for etc, Tables using	2
	nested if-else.	
	Nested Conditionals: if, if-else, if-elif-else, nested if,	
	1. Conditional and alternative statements, Chained and	3
Unit III	Iterations and Conditional statements	08
	3.5 Tuple as a return value.	
	3.4 Tuple assignment.	
	3.3 Slice operator.	
	3.2 Index operator.	
	3.1 Defining a tuple.	
	3 Tuples:	2
	elements of a list.	
	2.6 Updating list: addition, removal or updating of	
	2.5 List operations.	
	2.4 List membership and for loop.	
	2.3 Accessing list elements.	
	2.2 Use of range function.	
	2.1 List operations.	

	6.5 Three-dimensional Contour Plots, Wireframes and Surface Plots.	1
Unit V	Graphics	06
	1. Turtle Graphics: Overview of Turtle graphics, Turtle	1
	operations, Object instantiation and the Turtle graphics	
	module.	
	2. Drawing two-dimensional shapes.	1
	3. Taking a random walk.	1
	4. Colors and the RGB system.	1
	5. Drawing with random colors.	1
	6. Using the str function with objects.	1

 Think Python, How to Think Like a Computer Scientist, Allen Downey, Green Tea Press Needham, Massachusetts, 2015.

Unit-I: Chapter-1: Sec. 1.1-1.5, Chapter-2: Sec. 2.1-2.6, Chapter-3: Sec. 3.1-3.6,

Chapter-5: Sec. 5.1-5.3.

Unit-II: Chapter-8: Sec. 8.1-8.5, Chapter-10: Sec. 10.12, Chapter-12: Sec.12.1.- 12.6.

Unit-III: Chapter 5: Sec. 5.4 -5.7, Chapter 7: Sec. 7.1-7-7.5.

- Introduction to Scientific Computing in Python, Robert Johansson, 2016. Unit-I: Chapter-6: Sec. 6.5-6.8
- Python for Scientific Engineering, Hans-Petter Halvorsen, 2020. Unit-V: Chapter-31
- Fundamentals of Python: From First Programs to Data Structure, Keneth A Lambert, Martin Osborne, 2010, Course Technology, Cengage Learning. Unit-V: Chapter-7: Sec. 7.1.1 to 7.1.8

Reference books:

- 1. Fundamentals of Python First Programs, Lambert K. A. Cengage Learning India, 2015.
- 2. Introduction to Computing and Programming in Python, Guzdial, M. J., Pearson India.
- 3. Introduction to Scientific Computing Using Python, Application Development Focus, Ljobomir Perkovic, Second Edition, Wiley Publication.
- 4. Python: Notes for Professionals, Goalkicker.com, Free Programming books.

Website:

1. https://www.math.purdue.edu/~bradfor3/ProgrammingFundamentals/Python/

Practical number	Title	No. of Practical
	Practicals based on 23SBMT21VS	
Ι	Introduction to Python, Python Data Types-I	1
Π	Python Data Types- II	1
III	Control statements in Python-I	1
IV	Control statements in Python-II	1
V	Application: Divisibilty, Primes, Congruence	1
VI	Application: Divisibilty, Primes, Congruence	1
VII	Application: Calculus-I	1
VIII	Application: Calculus-II	1
IX	Application: Co-ordinate Geometry-I	1
X	Application: Co-ordinate Geometry-II	1
XI	Graph plotting	1
XII	Turtle Graphics	1

Offered as	Skill Enhancement Course
Course/ Paper Title	Operations Research
Course Code	23SBMT21SE
Semester	II
No. of Credits	2

Unit No	Title with Contents	No. of Lectures
Unit I	The Simplex Method	12
	1. The Simplex Method.	3
	1.1 Iterative Nature of the Simplex Method.	
	1.2 Computational Details of Simplex Method.	
	1.3 Summary of the Simplex Method.	

	2 Artificial Starting Solution.	5
	2.1 M- Method.	
	2.2 Two Phase Method	
	3 Special Cases in the Simplex Method	4
	3.1 Degeneracy.	
	3.2 Alternative Optima	
	3.3 Unbounded Solution.	
	3.4 Infeasible Solution.	
Unit II	Duality and Dual Simplex Algorithm	08
	1 Definition of the Dual Problem.	1
	2 Primal Dual Relationships	2
	2.1 Review of Simple Matrix Operations.	
	2.2 Simplex Tableau Layout.	
	2.3 Optimal Dual Solution.	
	2.4 Simplex Tableau Computations.	
	3 Economic Interpretation of Duality	2
	3.1 Economic Interpretation of Dual Variables.	
	3.2 Economic Interpretation of Dual Constraints.	
	4 Dual Simplex Algorithm.	3
Unit III	The Transportation Model	10
	1 Definition of the Transportation Model	2
	2 The Transportation Algorithm.	
	2.1 Determination of the Starting Solution.	3
	2.2 Iterative Computations of the Transportation	3
	Algorithm.	
	2.3 Simplex Method Explanation of the Method of	2
	Multipliers.	
Unit IV	The Assignment Model	06
	1 The Assignment Model.	6
	1.1 The Hungarian Method.	
	1.2 Simplex Explanation of The Hungarian Method	

 Operations Research An Introduction, Hamdy A. Taha, Tenth Edition, Global Edition, Pearson

Unit-I: Chapter-3: Sec. 3.3, 3.4, 3.5.

Unit-II: Chapter-4: Sec. 4.1, 4.2, 4.3, 4.4 (Only 4.4.1).

Unit-III: Chapter-5: Sec. 5.1, 5.3,

Unit-IV: Chapter 5: 5.4.

Reference books:

1. Operations Research Theory and Applications, J K Sharma, Sixth Edition, 2016, Trinity Press.

2. Operations Research, Er. Prem Kumar Gupta, Dr. D.S. Hira, Seventh Edition, S. Chand and Company.

Website:

1. https://nptel.ac.in/courses/110106062

Offered as	Open Elective
Course/ Paper Title	Business Mathematics for Commerce
Course Code	23SBMT1OEA
Semester	
No. of Credits	4

Unit No-I	Title with Contents	No. of Lectures
	Matrices and Determinants	11
	1. Definition of matrices.	1
	2. Types of matrices.	1
	3. Algebra of matrices.	1
	4. Determinant of matrices.	2
	5. System of equations.	1
	6. Solution of system of linear equations by adjoint method	2
	(upto3 variables only)	
Unit-II	Arithmatic Progression, Geometric Progression and	09

	Harmonic Progression	
	1. Arithmatic Progression	3
	2. Geometric Progression	3
	3. Harmonic Progression	3
Unit-III	Permutation and Combination	06
	1.Permutation	3
	2.Combination	3
Unit-IV	Interest and Annuity	12
	1. Simple Interest.	1
	2. Compound Interest.	1
	3. Equated Monthly Installment (EMI) by interest of reducing	2
	balance and flat interest methods.	
	4. Ordinary Annuity.	2
	5. Sinking funds.	2
	6. Annuity due.	2
	7. Present value and future value of annuity	2
Unit V	Shares and Mutual Funds	10
	1. Concepts of shares.	1
	2. Facevalue.	1
	3. Marketvalue.	1
	4. Dividend.	1
	5. Equity shares.	1
	6. Preferential shares.	1
	7. Bonus shares.	1
	8. Concept of Mutual funds.	1
	9. Change in Net Asset Value(NAV).	1
	10. Systematic Investment Plan(SIP).	1
Unit VI	Linear Programming Problem (LPP) and	12
	Transportation Problem	
	1. Concept of LPP.	1
	2Formulation of LPP.	1
	3. Solution of LPP by graphical method	2
	4. Concept of Transportation Problem	1
	5. Initial Basic Feasible Solution	1
	6. North West Corner Method	2
	7. Least Cost Method (LCM)	2

8.Vogel's Approximation Method	2
--------------------------------	---

 Bussiness Mathematics-Dr. S.M. Shukla, Dr. R.R. Sharma, Sahitya Bhawan Publications, Agra. Unit I: Chapter 1, Chapter2, Chapter 3. Unit II: Chapter 4, Chapter5, Chapter 6. Unit-III: Chapter 7. Unit-IV: Chapter 10,11,12. Unit-V: Chapter 13.
 Operation Research- Prem Kumar Gupta, Dr. D.S. Hira. Unit II: Chapter 2 (2.1, 2.2, 2.3, 2.6, 2.9, 2.10), Chapter 3 (3.1, 3.2, 3.3 section 3.5 upto Vogel's Approximation Method (VAM).)

Reference books:

 A Textbook of Business Mathematics (for B.Com and BBA courses of all India Universities) – Dr.Padmalochan Hazarika, S Chand and Company Limited.

Website:

 https://www.classcentral.com/course/swayam-bcoc-134-business-mathematics-andstatistics-59093.

Offered as	Open Elective
Course/ Paper Title	Quantitative Aptitude
Course Code	23SBMT1OEB
Semester	
No. of Credits	02

Unit I	Ratio and Proportion	08
	1. Concept of Ratio	1
	2. Concept of Proportion	1
	3. Types of ratios	3
	4. Types of proportions	3
Unit II	Average	06
	1. Concept of average	1

	2. Examples	5
Unit III	Time, Distance and Speed	10
	1. Relation of Speed, Time and Distance	1
	2. Units	1
	3. Average Speed	4
	4. Relative Speed	4
Unit IV	Time and Work	06
	1. Concept of Time and Work	1
	2. Examples	5

References:

- 1. Quantitative Aptitude for Competitive Examinations by Dr.R.S. Aggarwal, S.Chand Publication
- 2. Fast Track Objective Arithmetic by Rajesh Verma , Arihant Publication
- R.V.Praveen, Quantitative Aptitude and Reasoning, 2nd Revised Edition 2013, Prentice-Hall of India Pvt.Ltd.
- G. K. Ranganath, C. S. Sampangiram and Y. Rajaram, A text Book of business Mathematics, 2008, Himalaya Publishing House.

Offered As	Open Elective
Course/ Paper Title	Enhancement of Mathematical Skills For
	Competitive Exams
Course Code	23SBMT2OEA
Semester	
No. of Credits	2

Unit No	Title with Contents	No. of Lectures
Unit I	Number System and Algebraic operations	12
	1. Number System.	1
	2. Types of Numbers.	1
	3. Series (AP and GP).	2
	4. Algebraic operations, BODMAS.	2

	5. Divisibility, LCM and HCF.	2
	6. Fraction, Simplification.	2
Unit II	Time, work and Distance	12
	1. Time and work.	2
	2. Time and distance.	2
	3. Boats and steams.	2
	4. Problems on trains.	2
	5. Calendar	2
	6. Clock	2
Unit III	Permutation, Combination and Probability	
	1. Permutations and Combinations.	2
	2. Probability.	2
	3. Heights and Distances	1
	4. Odd Man Out and Series	1

 R.S. Aggarwal, "Quantitative Aptitude for Competitive Examinations", Revised Edition, S. Chand and Co. Ltd, New Delhi, 2017.

Unit I: Chapter 1, Chapter 2, Chapter 3, Chapter 4.

Unit II: Chapter 17, Chapter 18, Chapter 19, Chapter 20.

Unit-III: Chapter 30, Chapter 31, Chapter 34, Chapter 35.

Reference books:

- 1. Quantitative Aptitude and Reasoning by R V Praveen, PHI publishers.
- 2. Quantitative Aptitude : Numerical Ability (Fully Solved) Objective Questions, Kiran Prakashan, Pratogitaprakasan, Kic X, Kiran Prakasan publishers.
- 3. Quantitative Aptitude for Competitive Examination by Abhijit Guha, Tata Mc Graw hill publications

Offered As	Open Elective
Course/ Paper Title	Mathematics in real life
Course Code	23SBMT2OEB
Semester	
No. of Credits	2

Unit I	Working with Numbers	08
	1. Whole numbers	1
	2. Rounding	1
	3. Fractions and Decimals	2
	4. Percentage	2
	5. Word Formulas and functions machines	2
Unit II	Units of Measures	04
	1. Using metrics measurement	1
	2. Estimating Measuring and comparing weights	1
	3. Capacity	1
	4. Measuring temperature	1
Unit III	Handling data	10
	1. Collecting data	1
	2. Handling data	1
	3. Pictograms	1
	4. Pie charts	1
	5. Bar Charts	1
	6. Line Graphs	1
	7. Averages	2
	8. Probablity	2
Unit IV	Shape and Space	04
	1. Around the edge	2
	2. Area	2

Website:

https://www.open.edu/openlearn/science-maths-technology/everyday-maths-1/contentsection-overview?active-tab=description-t