

M.C.E. Society's ABEDA INAMDAR SENIOR COLLEGE OF ARTS, SCIENCE AND COMMERCE (AUTONOMOUS), PUNE

AZAM CAMPUS, CAMP, PUNE - 411001

Syllabus of B.C.A. (Science)

Applicable for the Autonomous College affiliated to

Savitribai Phule Pune University

BCA (Science) Degree Course (Choice Based Credit System)

(2021 Pattern)

With effect from June 2021

Preamble:

- B.C.A. (Science) is a three year undergraduate degree programme spread over six semesters. This program is for candidates who wish to explore new emerging technologies using computer languages. The programme will be able to develop the ability and skill to have a problem solving approach towards issues related to the society and the information technology world. The programme is designed to bridge the gap between IT industries and academic institutes by incorporating the latest development into the curriculum and to give students a complete understanding within a structured framework. The structure of this program is fully computer application oriented which helps the students to build up a successful career in computer applications and to pursue higher studies.
- The B.C.A.(Science) Degree Course (2021 pattern) will be introduced in the following order:-

a. First Year B.C.A. Science	2021-2022
b. Second Year B.C.A. Science	2022-2023
c. Third Year B.C.A. Science	2023-2024

Programme Educational Objectives:

B.C.A. (Science) program will prepare its students as:

PEO 1: To progress their career productively in software industry, academia, research, entrepreneurial pursuit, government, consulting firms and other Information Technology enabled services.

PEO 2: To achieve peer-recognition; as an individual or in a team; by adopting ethics and professionalism and communicate effectively to excel well in cross culture and interdisciplinary teams.

PEO 3: To continue a lifelong professional development in computing that contributes in self and societal growth.

Programme Outcomes:

On completion of BCA (Science) degree, the students will be able to:

PO1: Analyze the requirements of a computing problem using appropriate algorithms and data structures.

PO2: Implement the solution of a computing problem using appropriate programming languages.

PO3: Use mathematical underpinnings of the discipline of computer science.

PO4: Recognize the ethical, legal and social implications of computing in a global society.

PO5: Use oral and written communication skills to convey technical information effectively and accurately.

PO6: Use their interpersonal skills when working in a team environment.

PO7: Recognize the need for and ability to engage in continuing professional development.

PO8: Ability to use appropriate techniques, skills, and tools necessary for computing practice

Semester -I (First Year B.C.A (Science))

Course	Course	Community (December 1974)	Credits		Credits Evalua		valuati	uation
Type	Code	Course / Paper Title	T	P	CIE	SEE	Total	
CC – I	21SBCA111	Computer Fundamental	4	-	40	60	100	
CC – II	21SBCA112	Problem Solving and C Programming	4	1	40	60	100	
CC – III	21SBCA113	Applied Mathematics and Statistics	4	-	40	60	100	
CC – IV	21SBCA114	Database Management System	4	-	40	60	100	
Core Practical	21SBCA115	Lab I: MS Office and VBA	-	1.5	20	30	50	
Core Practical	21SBCA116	Lab II: Programming in C	-	1.5	20	30	50	
Core Practical	21SBCA117	Lab III: Statistics Practical using R	-	1.5	20	30	50	
Core Practical	21SBCA118	Lab -IV :Database Management System	-	1.5	20	30	50	
	Total		16	6	240	360	600	

Note: Non CGPA course to be conducted in Semester I 21SDG11M2: DEMOCRACY, ELECTIONS AND GOOD GOVERNANCE DEMOCRACY (GROUP-II, SEM-I)

Semester II (First Year B.C.A (Science))

Course	Course	Course / Paper Title	Credits		Credits Evalua		valuati	ation	
Type	Code	Course / Laper Title	T	P	CIE	SEE	Total		
CC – I	21SBCA121	Data Structures using C	4	ı	40	60	100		
CC – II	21SBCA122	Introduction to Web Technology	4	-	40	60	100		
CC – III	21SBCA123	Advanced Database Management System	4	1	40	60	100		
CC – IV	21SBCA124	Introduction to Computer Organization	4	1	40	60	100		
Core Practical	21SBCA125	Lab I: Data Structures using C	1	1.5	20	30	50		
Core Practical	21SBCA126	Lab II: Web Technology	1	1.5	20	30	50		
Core Practical	21SBCA127	Lab III: Advanced Database Management System	1	1.5	20	30	50		
Core Practical	21SBCA128	Lab IV: Computer Organization	1	1.5	20	30	50		
	То	tal	16	6	240	360	600		

Note: Non CGPA course to be conducted in Semester II 21SPE12M2: PHYSICAL EDUCATION (GROUP-I, SEM-II)

Semester III (Second Year B.C.A (Science))

Course	Course	·	Cred	lits	E	valuati	on
Type	Code	Course / Paper Title	T	P	CIE	SEE	Total
CC – I	21SBCA231	Object Oriented Programming using C++	4	-	40	60	100
CC – II	21SBCA232	Advanced Web Technology using PHP	4	-	40	60	100
CC – III	21SBCA233	Software Engineering	4	-	40	60	100
Core Practical	21SBCA234	Lab I: Object Oriented C++ Programming	-	2	20	30	50
Core Practical	21SBCA235	Lab-II Advanced Web Technology using PHP	-	2	20	30	50
Core Practical	21SBCA236	Lab III: Software Testing Tools (Testing using open source tools)	-	2	20	30	50
AECC –	21SBHENT23	Health and Nutrition	2	-	20	30	50
AECC – II	21SBAEEL23	Language –I	2	-	20	30	50
	To	otal	16	6	220	330	550

Note: Non CGPA course to be conducted in Semester III

21SBCM23SD: Certificate Course on Content Management System using WordPress

Semester IV (Second Year B.C.A (Science))

Course	Course	Course / Donor Title	Credits		E	valuati	on
Type	Code	Course / Paper Title	T	P	CIE	SEE	Total
CC – I	21SBCA241	Core JAVA Programming	4	-	40	60	100
CC – II	21SBCA242	Programming in Python	4	-	40	60	100
CC – III	21SBCA243	Internet of Things	4	-	40	60	100
Core Practica 1	21SBCA244	Lab I: Core JAVA	-	2	20	30	50
Core Practica 1	21SBCA245	Lab II: Programming in Python	-	2	20	30	50
Core Practica 1	21SBCA246	Lab-III: Internet of Things	-	2	20	30	50
AECC –	21SBAEEV24	Environmental Science Awareness Course -II	2	ı	20	30	50
AECC – II	21SBAEEL24	Language –II	2	-	20	30	50
	To	otal	16	06	220	330	550

Semester V (Third Year B.C.A (Science))

Course	_		Credits				Evaluati	ion
Type	Course Code	Course / Paper Title	T	P	CIE	SEE	Total	
DSCT1	21SBCA351	Advanced Java Programming	4	-	40	60	100	
DSCT2	21SBCA352	Data Mining	4	-	40	60	100	
DSCT3	21SBCA353	Computer Networks & Security	4	-	40	60	100	
DSCP1	21SBCA354	Lab I: Advanced Java	-	2	20	30	50	
DSCP2	21SBCA355	Lab II: Data Mining using open Source Tools	-	2	20	30	50	
DSCP3	21SBCA356	Lab III: Project	-	2	20	30	50	
SEC-1*	21SBCA357A	React JS	2		20	20	50	
SEC-1*	21SBCA357B	Angular JS	2	-	20	30	50	
SEC-2*	21SBCA358A	C# .Net						
SEC-2*	21SBCA358B	Objective C	2	-	20	30	50	
	7	Total	16	06	220	330	550	

Note: *: Choose one course from SEC1 and SEC2

Semester VI (Third Year B.C.A (Science))

Course	Course	Carrage / Daman Title	Credits		Credits Ev			Evaluation		
Type	Code	Course / Paper Title	T	P	CIE	SEE	Total			
DSCT1	21SBCA361	Introduction to Data Science and Machine Learning	4	-	40	60	100			
DSCT2	21SBCA362	Android Programming	4	-	40	60	100			
DSCT3	21SBCA363	Operating System	4	-	40	60	100			
DSCP1	21SBCA364	Lab I: Data Science and Machine Learning using Python	-	2	20	30	50			
DSCP2	21SBCA365	Lab II: Android Programming	-	2	20	30	50			
DSCP3	21SBCA366	Lab III: Project	-	2	20	30	50			
SEC-1*	21SBCA367A	Node JS								
SEC-1*	21SBCA367B	Laravel Framework	2	-	20	30	50			
SEC-2*	21SBCA368A	ASP .Net	2		• •	• •				
SEC-2*	21SBCA368B	Spring Framework		-	20	30	50			
	Т	otal	16	06	220	330	550			

Note: *: Choose one course from SEC1 and SEC2

SEMESTER – I

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Computer Fundamental

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Computer Fundamental
Course Code	21SBCA111
Semester	I
No. of Credits	04

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To study the basics of Computer System
2.	To learn how to configure computer devices
3.	To Learn Basic Commands of Operating system and application software
4.	To understand Open Source Software

Sr. No.	Learning Outcome
1.	Define working of computers and peripherals, types of software and
	languages
2.	Troubleshoot the computer systems and use utility software
3.	Choose commands and features of operating systems and application
	software
4.	Use open source software

Unit No	Unit No Title with Contents	
Unit I	Introduction to Computer System	10
	1. Introduction	1
	i. The basic parts of a computer	
	2. History of Computers	2
	i. Mini Computers	
	ii. Micro Computers	
	iii. Mainframe Computers	
	iv. Supercomputers	
	v. Laptops	
	vi. Tablets.	
	3. Types of Computer	1
	i. Analog	
	ii. Digital	
	iii. Hybrid	
	4. Types of CPU	1
	i. Single Core	
	ii. Dual Core	
	iii. Quad Core	
	5. Types of Programming Languages	1
	i. Machine Languages	
	ii. Assembly Languages	
	iii. High Level Languages	
	6. Translators	
	i. Assembler	1
	ii. Compiler	
	iii. Interpreter	
	7. Introduction Number Systems	
	i. Binary	3
	ii. Octal	
	iii. Hexadecimal system	
	iv. Conversion	
	v. Addition	
	vi. Subtraction	
	vii. Multiplication	
	viii. Division	
Unit II	Computer Peripherals	08
	1. Hardware & Motherboard	1
	i. Introduction	
	ii. Hardware upgrade	
	iii. Components of Motherboard	
	2. Register Memory	1

i.	Types	
ii.	Functions of Computer Register	
3. Cach	e Memory	1
i.	Types of Cache Memory	
ii.	Its working	
4. Prim	ary Memory	1
i.	RAM	
ii.	ROM	
iii.	PROM	
iv.	EPROM	
5. Secon	ndary Storage Devices	1
i.	HDD	
ii.	SSD	
6. І/О Г	Devices	1
i.	Scanners	
ii.	Digitizers	
iii.	Plotters	
iv.	LCD	
v.	Plasma Display	
7. Point	ing Devices	1
i.	Joystick	
ii.	Touch Screens	
8. Intro	duction to Network devices	1
i.	Hubs	
ii.	Switches	
iii.	Routers	
iv.	NAS	
v.	MODEM	
vi.	Access Points	
vii.	Various cables.	
Unit III	Computer Software	10
1. Type	es of Software	2
i.	System Software	
ii.	Application Software	
2. Oper	rating System	2
i.	Types of Operating System	
ii.	Functions of Operating System	
3. Utili	ty Programs	2
i.	Anti-plagiarism software	
i. ii.	Anti-plagiarism software Disk Cleaning	
ii. iii.	Disk Cleaning	2

	ii. Git	
	iii. Jenkins	
5.		2
3.	i. sudo, ls, pwd, cat, grep, cd, chmod,chown,	2
	curl, df, diff, echo, exit, find, finger, free,	
	groups, gzip, head, history, kill, less, man,	
	mkdir, mv, rm, passwd, ping, ps,	
	shutdown, ssh, tail, tar, top, uname, w,	
	whoami and alias.	
T1:4 TX7		12
Unit IV	Open Source Software	12
1.	Introduction	1
	i. Open Source	
	ii. Free Software	
	iii. Free Software vs. Open Source software	1
2.	Open Source Operating Systems	1
	i. GNU/Linux	
	ii. Android	1
3.	Development tools	1
	i. IDE (Visual Studio and Eclipse)	
	ii. LAMP	4
4.	Open Source Projects	1
	i. GNU/Linux	
	ii. Wikipedia	
	iii. Wordpress	
	iv. GCC	
	v. Github	
_	vi. Open Office.	
5.	Word Processors	2
	i. LibreOffice	
6.	Editors	2
	i. Notepad++	
	ii. Vi	
	iii. Emacs	
	iv. Gedit and Kate	
	v. Difference between Word	
	Processor/Editors and IDE.	_
7.	Presentation Tools	2
	i. LibreOffice Impress.	_
8.	Introduction to Google Apps	2
	i. Google Docs	
	ii. Google Sheets	
	iii. Google Forms	
	iv. Applications	

Unit V	MS Office	10
	1. MS - Word Basics	3
	2. MS - PowerPoint Basics	3
	3. MS- Spreadsheet basics	4
	i. Creating, editing, saving and printing spreadsheets	
	ii. Working with functions & formulas	
	iii. Modifying worksheets with color & auto formats	
	iv. Graphically representing dataa. Charts	
	b. Graphs	
	v. Speeding data entry using Data Forms	
	vi. Analyzing data	
	a. Data Menu	
	b. Subtotal	
	c. Filtering Data	
	vii. Formatting worksheets	
	viii. Securing and Protecting spreadsheets	
Unit VI	Introduction to VBA(Advance Excel)	10
	1. VBA Overview	4
	i. Developer Tab	
	ii. Macro Security	
	iii. File Extension	
	iv. Name Rule	
	v. Code	
	vi. Window	
	2. Insert Module, Start Code, End Code	2
	3. Code Basic	4
	i. Object	
	ii. Collection	
	iii. Property	
	iv. Method	

References:

- 1. P.K. Sinha & Priti Sinha, "Computer Fundamentals", 3rd Edition, BPB Pub.
- **2.** John Walkenbach, Michael Alexander and Richard Kusleika, "Excel 2019 Bible", Wiley Publication.
- 3. Steven Roman, "Writing Excel Macros with VBA", O'reilly Publication.
- 4. Sumitabha Das, "Unix Concepts and Applications", Tata McGraw Hill Education
- 5. Join Josh, "PC/HARDWARE", O'Reilly Publication

Website Reference Link:

- 1. Open Source Initiative: https://opensource.org/
- 2. Wikipedia, the free encyclopedia: https://en.wikipedia.org/
- **3.** GitHub Documentation: https://help.github.com/
- **4.** libreofficehelp.com Quick Tutorials, Solutions and to the point: https://www.libreofficehelp.com
- 5. Tutorials point-Ubuntu: https://www.tutorialspoint.com/ubuntu/ubuntu_libreoffice.html
- **6.** Pdfdrive-MSOffice : https://www.pdfdrive.com/skills-for-success-with-ms-office-2010-vol1-e175845419.html

Sr.No	Name of IDE or Tools	Operating System
1	MS Office 2013, GitHub Platform, VBA 6.5 onwards	Window Operating System
2	Libre Office 6.1.3, VBA 6.5 onwards	Red Hat /Linux / Ubuntu

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Problem Solving and C Programming

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Problem Solving and C Programming
Course Code	21SBCA112
Semester	I
No. of Credits	04

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	To provide a broad overview of problem solving techniques.	
2.	To gain a thorough understanding of the fundamentals of C programming	
3.	3. To write a code, compile and test C programs.	
4.	To develop the logical ability for solving the real world problems.	

Sr. No.	Learning Outcome	
1.	Define algorithms and explain their characteristics	
2.	Formulate algorithm and draw flowchart to solve a given problem	
3.	Explain use of appropriate data types, control statements	
4.	Demonstrate ability to use top-down program design	

Unit No	Title with Contents	No. of Lectures
Unit I	C Fundamentals	12
	1. Definition & Characteristics of algorithm,	1
	Examples of algorithms	
	2. Flow charts with examples	1
	3. Introduction to C	1
	i. Features of C	
	ii. Structure of C Program	
	4. C Character Set	1
	i. Identifiers	
	ii. Keywords	
	iii. Variables	
	iv. Constants	
	5. Data types	1
	i. Basic data types	
	ii. Enumerated types	
	iii. Type casting	
	iv. Declarations	1
	6. Expressions	1
	7. Operators	
	i. Unary Operators	
	ii. Binary Operators	
	iii. Arithmetic Operators	
	iv. Increment Decrement Operators	
	v. Relational Operator	
	vi. Logical operators	
	vii. Bit wise Operators	
	viii. Assignment Operators	
	ix. Comma Operator	
	x. size of operator	
	xi. Ternary conditional operator	
	xii. Precedence and associativity	
	8. Format specifier, printf, scanf functions	2
	9. getchar, putchar, getch functions	1
	10. gets, puts functions	1
	11. Escape sequence characters	1
Unit II	Control & Iterative Structures	10
	1. If, If- Else Statements, Nested If Statements	2
	2. Conditional Branching	2
	i. Switch statement	
	3. Loops	2
	i. for	

	ii. While	
	iii. dowhile	
	4. break, continue, goto statements	2
	5. Examples	
Unit III	Functions	2 06
	1. Introduction to Functions & Function	1
	Arguments	1
	2. Library & User defined functions	1
	3. Methods for parameter passing	1
	4. Recursion	1
	5. Storage Classes	1
	i. Auto	1
	ii. Static	
	iii. Global	
	iv. Register	
	6. Introduction to Macros	1
Unit IV	Array and String	08
CIIICIV	1. Introduction	1
	i. Array Declarations	1
	ii. Bounds Checking	
	2. Types of Array	1
i. Single dimension Arrays		1
	ii. Two dimension arrays	
	3. Arrays & Function	1
	4. String Concept, Declaration, definition,	1
	initialization	-
	5. Format specifiers, String literals/ constants &	1
	variables	-
	6. Reading & writing from & to console	1
	7. Array of strings	1
	8. Predefined functions in string.h	1
	i. strlen ,strcpy ,strcat ,strcmp ,strcmpi ,	1
	strrev, strlwr etc.	
Unit V	Pointers	09
	1. Concept	1
	i. Reference	
	ii. Dereference	
	2. Declaration, definition, initialization, Pointer	1
	Arithmetic, Multiple indirection	
	3. Parameter passing	2
	i. call by value	
	ii. call by reference	
	4. Arrays & Pointers	1

	i. Pointer to array	
	ii. Array of pointers	
	5. Functions & pointers	2
	i. Passing pointer to function	
	ii. Returning pointer from function	
	iii. function pointer	
	6. Dynamic memory management, Allocation,	2
	Resizing, Releasing, Memory leak / dangling	
	pointers	
Unit VI	Structure and Union	07
	1. Introduction to Structure	1
	2. Defining Structure, Declaring and Initializing	1
	Structure Variable, Accessing Structure	
	members, Copying and Comparing Structure	
	Variable	
	3. Array of Structure	1
	4. Nesting of Structure	1
	5. Pointers and Structure	1
	6. Passing Structure to function	1
	7. Union & Difference between Structure and	1
	Union	
Unit VII	Command Line Argument and File Handling	08
	1. Introduction to Command Line Argument	1
	2. Introduction to File Handling	1
	3. Types of files	1
	4. Operations on text & binary files	2
	5. Random access file	1
	6. Library functions for file handling	2
	i. fopen	
	ii. fclose	
	iii. fgetc,	
	iv. fseek	
	v. fgets	
	vi. fputc etc.	

References:

- **1.** B. W. Kerninghan& D. M. Ritchie, "The C Programming Language" (Second Edition), BPB Publication.
- **2.** By Ajay Mittal, "Programming in C A Practical Approach", Pearson Publications.
- **3.** Y S Kanetkar, "Let Us C",O'Rreilly Publication.
- 4. Cormen, Leiserson, Rivest, Stein, "Introduction to algorithms", O'Reilly Publication
- 5. Herbert Schildt, "C Complete Reference", McGraw Hill Education, 4th Edition
- **6.** Behrouz Forouzan& Richard Gilberg, "A structured Programming Approach using C" O'Reilly Publication

Website Reference Link:

- **1.** C Programming C Tutorial TutorialsPoint.com : https://www.tutorialspoint.com/cprogramming/
- 2. Learn C Programming: https://www.programiz.com/c-programming
- **3.** C Tutorial Learn C : https://www.cprogramming.com/tutorial/c-tutorial.html
- **4.** Head First C: https://www.pdfdrive.com/head-first-c-e19540108.html

Sr.No	Name of IDE or Tools	Operating System	
1	Turbo C 3.0 onwards	Window Operating System	
2	Vi Editor/GEdit 8.2 onwards & C compiler	Red Hat /Linux / Ubuntu	

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A. Mathematics

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Applied Mathematics and Statistics
Course Code	21SBCA113
Semester	I
No. of Credits	4 (1 Unit equivalent to 1 Credit)

Aims & Objectives of the Course

Sr.No.	Objectives	
1.	Learn basic terminology formal logic, sets, relations, functions and perform the operations associated with same.	
2.	Use formal logic proof and logical reasoning to solve problems.	
3.	To understand significance of statistical measures.	
4.	To study Correlation, Probability and sampling theory.	

Sr.No.	Learning Outcome
1.	Relate and apply techniques for constructing mathematical proofs and make use of appropriate set operations, propositional logic to solve problems.
2.	Demonstrate an understanding of basic marketing mathematics by solving relevant problems, including trade discounts, cash discounting, and markup and Mark down calculations.
3.	Use function or relation models to interpret associated relationships.
4.	Apply basic counting techniques and use principles of probability. Given a data, compute various statistical measures of central tendency.

Sr. No.	Course	Semester	Continuous Internal Evaluation (Internal Marks)	End Semester Exam (External Marks)	Total Marks	Credits
1.	21SBCA113 – Applied Mathematics and Statistics	I	40	60	100	4
2.	21SBCA117- Lab-III Applied Mathematics and Statistics	I	40	60	100	1.5

Continuous Internal Evaluation (CIE): Evaluation will be done continuously. Internal assessment will be of 40 marks.

Credits :04				
Duration: 1Hr/Exam	Mark	s:40		
10 Marks*	10	10	10 Marks*	
	Marks	Marks		
O.C. 1.	Two Class	Two	Mid Semester	
Offline / Online objective type examination	Tests (Average	Assignments	Descriptive	
	of two test)	(Each of 5 marks)	Type Examination	

Syllabus

Unit No.	Title with Contents	No. of Lectures
Unit I	Set Theory, Logic and functions	11
	1. Propositional Logic.	2
	2. Propositional Equivalences.	2
	3. Sets.	2 2
	4. Set Operations.	3
	5. Functions.	3
Unit II	Induction and Counting	12
	1. Mathematical Induction	2
	2. Strong Mathematical Induction.	2
	3. The Basics of counting.	2 3
	4. The Pigeonhole Principle.	3
	5. Permutations and Combinations.	3
Unit III	Relations and Graphs	13
	1. Relations and their properties.	2
	2. n- ary Relations and their applications.	1
	3. Representing Relations.4. Closure of Relations	
	5. Equivalence Relations.	$\frac{1}{2}$
	6. Partial Orderings.	1
	7. Graphs and Graph Models.	2
	8. Graph Terminology and Special Graphs.	1
	9. Representing Graphs.	1
	10. Connectivity.	1
Unit IV	Data interpretation and aggregation	14
	1. Data types: attributes, variables, discrete and	3
	continuous variables.	
	2. Data presentation: frequency distribution,	3
	histogram, ogive, bar plots, box-plot.	
	3. Measures of central tendency: Arithmetic mean	4
	(AM), median, mode Weighted AM, Arithmetic	
	mean of combined groups, Geometric mean (GM)	
	and Harmonic mean (HM).	
	 Measures of dispersion: Absolute and relative measures of dispersion Range, quartile deviation (QD), standard deviation (SD), variance. 	4
Unit V	Statistical computing using R	10
	1. Introduction to R and R studio.	2
	2. Data types and objects, reading and writing data.	2

3.	Control structures, functions, scoping rules, dates	2
a	nd times.	
4.	Data manipulation.	
5.	Data visualization.	$\frac{2}{2}$

Text books:

1. KENNETH H ROSEN (Indian Adaptation by Kamala Krithivasan),

Discrete Mathematics and Its Application with Combinatorics and Graph Theory, Seventh Edition, Special Indian Edition, McGraw Hill Education (India) Private Limited

Unit I: Chapter 1:Sec. 1.1, 1.2., Chapter 2: Sec. 2.1, 2.2, 2.3.

Unit II: Chapter 4: Sec. 4.1, 4.2 (Only Strong Induction and its examples),

Chapter 5: Sec. 5.1, 5.2, 5.3.

Unit III: Chapter 7: Sec. 7.1, 7.2, 7.3, 7.4, 7.5, 7.6.

Chapter 8: Sec. 8.1, 8.2, 8.3 (Only Representing Graphs), 8.4.

- **2.** Mathematical Statistics-J.N. Kapur and H.C. Saxena S. Chand Publication 20th Edition Unit IV: Chapter 1, Chapter 2, Chapter 3.
- **3.** Shailaja R. Deshmukh, Sharad D. Gore, Sudha G. Purohit. Statistics using R. Alpha Science International Ltd.

Unit V: Chapter 1, 2.

Reference books:

- 1. Bernard Kolman, Robert C. Busy, Sharon Cutler Ross, Discrete Mathematical Structures, Sixth Edition, PHI Learning Private Limited.
- 2. John P. D'Angelo & Douglas B West, Mathematical Thinking—Problem Solving and Proofs. Prentice Hall, 2nd Edition.
- 3. D Biswas. Probability and statistics. New Central book agency, Pvt Ltd

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Database Management Systems

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Database Management Systems
Course Code	21SBCA114
Semester	I
No. of Credits	04

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To understand the fundamental concepts of database management such as database design, database languages, and database-system implementation
2.	To study and understand systematic database design approaches
3.	To learn SQL – the database Query language

Sr. No.	Learning Outcome
1.	Design E-R Model for given requirements and convert the same into database tables.
2.	Formulate database queries using SQL
3.	Design a database in appropriate normal form

Unit No	Title with Contents	No. of
	Title with Contents	Lectures
Unit I	File Organization	10
	1. Introduction	2
	2. Physical / logical files	2
	3. Record organization	2
	i. Fixed	
	ii. Variable length	
	4. Types of file organization	4
	i. Heap	
	ii. Sorted	
	iii. Indexed	
	iv. Hashed	
TT *4 TT		10
Unit II	Introduction of DBMS	10
	1. Overview	1
	2. File system Vs. DBMS	1
	3. Data models - relational, hierarchical, network	2
	4. Levels of abstraction	2
	5. Data independence6. Structure of DBMS	2
	7. Users of DBMS	1
	8. Advantages and disadvantages of DBMS	1
Unit III	Conceptual Design (E-R model)	10
	1. Overview of DB design	1
	2. ER data model	3
	i. Entities	3
	ii. Attributes	
	iii. Entity sets	
	iv. Relations	
	v. Relationship sets	
	3. Additional constraints	3
	i. Key constraints	
	ii. Participation constraints	
	iii. Weak entities	1
	4. Aggregation and Generalization	2
TT 04 TT7	5. Case studies	40
Unit IV	Structure of Relational Databases	10
	1. Concepts of a table, a row, a relation, a tuple	4
	and a key in a relational database	

	2. Conversion of ER to Relational model	2
	3. Integrity constraints	4
	i. Primary key	
	ii. Referential Integrity	
	iii. Null constraint	
	iv. Unique constraint	
	v. Check constraint	
Unit V	Structured Query Language	10
	1. Introduction	1
	2. DDL commands with examples	2
	i. Create	
	ii. Drop	
	iii. Alter	2
	3. DML commands with examples i. Insert	
	ii. Update	
	iii. Delete	1
	4. Basic structure of SQL query	1
	5. Set operations & Aggregate functions	1
	6. Nested Sub-queries	1
	7. SQL Joins and their types	1
T7 14 T7T	8. Examples on SQL (case studies)	
Unit VI	Relational Database Design	10
	1. Pitfalls in Relational-Database	1
	2. Functional dependencies	2
	i. Basic concepts	
	ii. Closure of set of functional dependencies	
	iii. Closure of an Attribute set	
	3. Concept of a Super Key and a primary key	2
	4. Concept of Decomposition	1
	5. Desirable Properties of Decomposition	2
	i. Lossless join	
	ii. Dependency preservation	
	6. Concept of Normalization - Normal forms (only	2
	definitions) with example	
	i. 1NF	
	ii. 2NF	
	iii. 3NF	
I	iv. BCNF	

References:

- 1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, ,"Database System Concepts", McGraw-Hill Education
- 2. Atul Kahate, "Introduction to Database Management Systems", Pearson Education
- **3.** C. J. Date, A. Kannan and S. Swamynathan, "An Introduction to Database Systems" Pearson Education
- **4.** Ramez Elmasri , Shamkant B. Navathe, "Fundamentals of Database Systems" Pearson Education ,7th Edition
- **5.** BIPIN C DESAI, "An Introduction to Database System", Galgotia Publication

Website Reference Link:

- **1.** Learn DBMS Database Management System Tutorial : https://www.tutorialspoint.com/dbms/index.htm
- **2.** DBMS Tutorial | Database Management System javatpoint : https://www.javatpoint.com/dbms-tutorial
- **3.** Computer Science and Engineering NOC:Data Base Management System : https://nptel.ac.in/courses/106/105/106105175/
- **4.** Computer Science and Engineering Introduction to Database Systems and Design : https://nptel.ac.in/courses/106/106/106106095/

Sr.No	Name of IDE or Tools	Operating System
1	Postgresql 11.0 onwards	Window Operating System
2	Postgresql 11.0 onwards	Red Hat /Linux / Ubuntu

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Lab I: MS Office and VBA

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Lab I: MS Office and VBA
Course Code	21SBCA115
Semester	I
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	To understand installation process	
2.	To install operating system and applications	
3.	To learn various features of application software	

Sr. No.	Learning Outcome	
1.	Install operating system and execute various commands	
2.	Effectively use various features of application software	
3.	Create and use spreadsheets effectively	
4.	Able to Troubleshoot Operating System problems	

Assignment	Assignment Name	No. Of
No		Sessions
1	Operating System Commands , Editors and IDE	01
2	Open Office	03
3	MS Office	03
4	Git, GitHub and Jenkins	01
5	Visual Basic for Application 1 (1 Program, Run Macro, Variable)	03
6	Visual Basic for Application 2 (3 Programs, Function Basic,)	03
	Total Number of Sessions	14

Guidelines for Student Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and **handwritten write-up** of each assignment (Title, Problem Statement, Outcomes, Date of Completion, Assessment grade/marks and assessor's sign Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on the overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters with appropriate weightage. Suggested parameters include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Sr.No	Name of IDE or Tools	Operating System
1	MS Office 2013, GitHub Platform, VBA 6.5 onwards	Window Operating System
2	Libreoffice 6.1.3, VBA 6.5 onwards	Red Hat /Linux / Ubuntu

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Lab II: Programming in C

2021-22 (CBCS – Autonomy 21 Pattern)

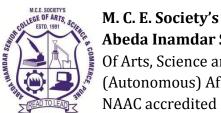
Course/ Paper Title	Lab II: Programming in C
Course Code	21SBCA116
Semester	I
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	To learn formulation of algorithm for a given problem	
2.	To study various data types, arrays and functions in C	
3.	To understand input-output and, control and iterative statements in C	
4.	To learn advanced features in C Programming	
5.	To study advanced data types	
6.	To understand built-in library functions	

Sr. No.	Learning Outcome	
1.	Formulate an algorithm and draw flowchart for the given problem	
2.	Implement the given algorithm in C	
3.	Write programs using appropriate data types and control structures in C	
4.	Write programs using pointers, structures and unions	
5.	Use Preprocessor directives	
6.	Manipulate strings using library functions	
7.	Write programs to perform operations on Files	

Assignment No	Assignment Name	No. Of Sessions
1	Assignment on C Fundamentals	02
2	Assignment on Control & Iterative Structures	02
3	Assignment on Functions	02
4	Assignment on Array and String	03
5	Assignment on pointers and pointers with Array	03
6	Assignment on Structures & union	02
	Total Number of Sessions	14


Guidelines for Student Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and **handwritten write-up** of each assignment (Title, Problem Statement, Outcomes, Date of Completion, Assessment grade/marks and assessor's sign. Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on the overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters with appropriate weightage. Suggested parameters include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

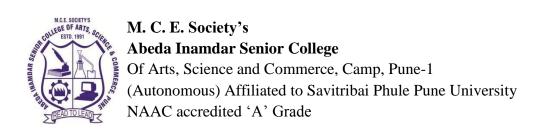
Sr.No	Name of IDE or Tools	Operating System
1	Turbo C 3.0 onwards	Window Operating System
2	Vi Editor/GEdit 8.2 onwards & C compiler	Red Hat /Linux / Ubuntu

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A. Mathematics

(CBCS – Autonomy 21 Pattern)


Course/ Paper Title	Lab III: Statistics Practical using R
Course Code	21SBCA117
Semester	I
No. of Credits	1.5 (1 Credit equivalent to one and half hours)

Aims & Objectives of the Course

Sr.No.	Objectives	
1.	To provide knowledge about applying theoretical concepts of applied mathematics and statistics to solve problems.	
2.	To provide hands-on experience on statistical package.	

Sr.No.	Learning Outcome	
1.	Apply mathematical and statistical concepts to solve problems.	
2.	Use R to perform statistical operations and data visualization	

Unit No.	Title with Contents	No. of Practical's	
Unit I	Set Theory, Logic and functions	1	
Unit II	Induction and counting	2	
Unit III	Functions, Relation and Graphs	3	
Practical's to be performed using R software			
Unit IV	Data Presentation and Aggregation	3	
Unit V	Data Manipulation and Visualization	5	

F.Y.B.C.A (Science) Lab – IV Database Management System

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Lab – IV Database Management System
Course Code	21SBCA118
Semester	I
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives
1.	Prepare E-R Diagram for the given problem statement
2.	Formulate appropriate SQL DDL Queries
3.	Formulate appropriate SQL DML Queries

Sr. No.	Learning Outcome
1.	Prepare E-R Diagram for the given problem statement
2.	Formulate appropriate SQL DDL Queries
3.	Formulate appropriate SQL DML Queries

Assignment	Assignment Name	No. Of
No		Sessions
1	To create simple tables, with only the primary key constraint	2
2	To create more than one table, with various constraints like referential integrity constraint, PK constraint, Check constraint, Unique constraint and Not null constraint	2
3	To drop a table from the database, to alter the schema of a table in the Database.	2
4	To insert, update and delete records using tables created in previous Assignments.	2
5	Queries using Aggregate function, Group by clause, Order by clause, Having clause and queries on join	3
6	Queries using set operations (union, intersect)	3
	Total Number of Sessions	14

Guidelines for Student Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and **handwritten write-up** of each assignment (Title, Problem Statement, Outcomes, Date of Completion, Assessment grade/marks and assessor's sign Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on the overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters with appropriate weightage. Suggested parameters include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Sr.No	Name of IDE or Tools	Operating System
1	Postgresql 11.0 onwards	Window Operating System
2	Postgresql 11.0 onwards	Red Hat /Linux / Ubuntu

SEMESTER – II

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Data Structures using C

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Data Structures using C
Course Code	21SBCA121
Semester	II
No. of Credits	04

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To provide the knowledge of basic data structures and their implementations.
2.	To develop skills to apply appropriate data structures in problem solving.
3.	To understanding about writing algorithms and step by step approach in solving problems with the help of fundamental data structures
4.	To be able to implement the abstract data type list as a linked list using the node and reference pattern.
5.	To learn static and dynamic data structures and also to understand analysis of algorithms.

Sr. No.	Learning Outcome
1.	Use the appropriate data structure in context of the solution of a given problem.
2.	Develop programming skills which require solving given problems.
3.	Develop effective software engineering practice, emphasizing such principles as decomposition, procedural abstraction, and software reuse.
4.	Know the strength and weakness of different data structures.

Unit No	Title with Contents	No. of Lectures
Unit I	Introduction to data structure	10
	1. Introduction	1
	i. Definition of Algorithm and data structures	
	2. Data types and data objects	1
	3. Abstract Data Types (ADT)	1
	4. Algorithm analysis:	1
	i. Frequency counts	
	Space and Time complexity	
	a. Best	
	b. Average	
	c. Worst Case	
	5. Asymptotic notation	1
	i. Big O	
	ii. Omega (Ω)	
	6. Matrix representation using arrays	1
	i. Row and column major	
	ii. Basic operations on matrices	
	7. Sorting techniques	2
	i. Bubble sort	
	ii. Insertion sort	
	iii. Merge sort	
	iv. Quick sort	
	8. Searching techniques	2
	i. Linear search	
	ii. Binary search	
Unit II	Linked Lists	10
	1. Linked Lists	2
	i. Introduction	
	ii. Definition	
	2. Representation	2
	i. Static	
	ii. Dynamic	
	3. Types of linked lists	2
	i. Singly	
	ii. Doubly	
	iii. Circular	
	4. Operations on link list	2

	i. Create	
	ii. Display	
	iii. Insert	
	iv. Delete	
	v. Reverse	
	vi. Search	
	vii. Sort	
	5. Applications of Linked List	2
	i. Polynomial representation	2
	ii. Addition of two polynomials	
Unit III	Stack	10
Unit III		
	1. Stack	1
	i. Definition	2
	2. Representationsi. Create	2
	ii. Display	
	3. Operations on stack i. push (isFull())	4
	ii. pop(isEmpty())	
	iii. Peek (traverse)	
	4. Applications of stack:	
	i. Function: Recursion	3
	ii. Polish notation: Infix to postfix, Postfix	
	Evaluation	
Unit IV	Queue	10
	1. Queue	1
	i. Definition	
	2. Operations	2
	i. init()	
	ii. enqueue()	
	iii. dequeue()	
	iv. isEmpty()	
	v. isFull()	
	vi. peek()	
	3. Implementation	4
	i. Static	
	ii. Dynamic	
	4. Types of Queue (with implementation)	3
	i. Linear Queue	
	ii. Circular Queue	
		j

Unit V	Trees	10
	1. Introduction and Tree terminologies	1
	2. Definitions	1
	i. Tree	
	ii. Root	
	iii. Child	
	iv. Leaf	
	v. Level	
	vi. Height	
	vii. depth	
	3. Binary Tree and its Types	2
	i. Rooted	
	ii. Full	
	iii. Complete	
	iv. Skewed.	
	4. Representation of Trees	1
	i. Using arrays	
	ii. Using Linked Lists	
	5. Types of Traversal	2
	i. Preorder	2
	ii. Inorder	
	iii. Postorder	
	6. Applications of Binary trees	1
	7. Binary Search Tree (BST)	2
	i. Introduction	
	ii. Definition	
Unit VI	Graphs	10
	1. Basic concepts and Terminology of Graph	2
	2. Representations of Graphs:	3
	i. Adjacency list	
	ii. Adjacency matrix	
	3. Graph Traversals:	
	i. BFS	3
	ii. DFS	
	4. Applications:	2
	i. Dijkstra's algorithm for shortest path	

- 1. E. Horowitz &Sahni, "Fundamental Data Structure", Galgotia Book Source, 1983.
- 2. A. Tannenbaum, "Data Structure Using C", Pearson Education, 2003.
- **3.** N. Wirth, Algorithms, "Algorithm + Data Structure = Program", Prentice Hall of India, 1979.
- 4. Samanta, Debasis, "Classic Data Structures", PHI Publication, 2nd Edition

Website Reference Link:

- 1. DATA STRUCTURES BY D SAMANTHA.pdf: https://docs.google.com/file/d/0B-RaWa38E8KsdHd6QV8zRmw1NlE/view
- **2.** Download Data Structure eBooks for Free : https://www.pdfdrive.com/data-structure-books.html
- **3.** Data Structure and Algorithms : https://www.tutorialspoint.com/data_structures
- **4.** Learn Data Structures and Algorithms : https://www.programiz.com/dsa

Sr.No	Name of IDE or Tools	Operating System
1	Turbo C 3.0 onwards	Window Operating System
2	Vi Editor/GEdit 8.2 onwards & C compiler	Red Hat /Linux / Ubuntu

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Introduction to Web Technology

(CBCS – Autonomy 21 Pattern)

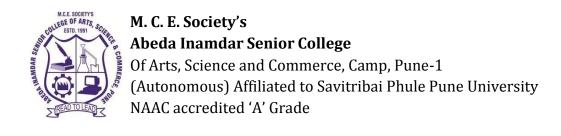
Course/ Paper Title	Introduction to Web Technology
Course Code	21SBCA122
Semester	II
No. of Credits	04

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To review the current topics in Web &Internet Technologies.
2.	To learn the basic working scheme of the Internet and World Wide Web.
3.	To understand fundamental tools and technologies for web design.

Sr. No.	Learning Outcome
1.	Comprehend the technologies for Hypertext Mark-up Language (HTML).
2.	Specify design rules in constructing web pages and sites.
3.	Effectively deal with programming issues relating to CSS, JavaScript, and PHP

Unit No	Title with Contents	No. of Lectures
Unit I	Internet Basics	2
	1. Introduction	1
	i. Clients	
	ii. Servers	
	iii. Communication	
	iv. Client –Server architecture	
	2. Internet-Basics	
	i. Internet Protocols(HTTP, FTP,IP)	
	3. World Wide Web(WWW),WC	1
	4. Messages	
	i. HTTP request message	
	ii. HTTP response message	
Unit II	HTML 5	10
	1. Introduction	1
	i. HTML 5	
	ii. Basic HTML Structure	
	2. Common HTML Tag	1
	3. Physical and Logical HTML	1
	4. Types of Images	1
	i. Client side image mapping	
	ii. Server-side image mapping	
	5. List	1
	6. Table	1
	7. Frames	1
	8. Embedding Audio, Video	1
	9. HTML form and form elements	1
	10. Introduction to HTML Front Page	1
Unit III	Cascading Style Sheet(CSS 3)	12
	1. Introduction	1
	i. Definition of CSS	
	ii. Why Use CSS?	
	2. CSS Syntax	1
	3. Set Up Web Pages with CSS	1
	4. Styling Text, Font, and Properties	2
	5. Styling Page Backgrounds	1
	6. Styling Lists in CSS	1
	7. Using CSS Classes and IDs	1


	8. Using Borders and Height and Width CSS	1
	Properties	
	9. Positioning Elements	1
	10. Validating CSS and HTML.	2
Unit IV	Java Script	14
	1. Introduction to JavaScript	1
	2. Identifier & Operator	1
	3. Control Structure	2
	4. Functions	2
	5. Document Object Model (DOM)	2
	6. DOM Objects (Window, Navigator, History,	2
	Location)	
	7. Predefined Functions	1
	8. String Functions	1
	9. Array in JavaScript	2
Unit V	Introduction to Bootstrap	12
	1. Bootstrap Overview	1
	2. Bootstrap — Environment setup	1
	3. Bootstrap — Grid system	2
	4. Bootstrap — Typography	2
	5. Bootstrap — Tables	2
	6. Bootstrap — Forms	2
	7. Bootstrap — Buttons	2
Unit VI	Advanced Bootstrap	10
	1. Bootstrap — Responsive utilities	1
	2. Bootstrap — Dropdowns	1
	3. Bootstrap — Button groups	2
	4. Bootstrap — Input groups	2
	5. Bootstrap — Navbar	1
	6. Bootstrap — Pagination	1
	7. Bootstrap — Panels	1
	8. Bootstrap — Modal	1

- 1. Thomas A Powell, "The Complete Reference HTML and CSS", McGraw Hill,5th Edition
- 2. Jon Duckett, "HTML and CSS: Design and Build Websites", Wiley
- **3.** Laura Lemay,RafeColbum,"Mastering HTML, CSS &Javascript Web Publishing",BPB Publications

Website Reference Link:

- 1. W3Schools HTML Tutorial: https://www.w3schools.com/html/
- **2.** CSS Tutorial : https://www.tutorialspoint.com/css/index.htm
- 3. Learn Bootstrap Tutorial JavaTpoint : https://www.javatpoint.com/bootstrap-tutorial
- **4.** Introduction Bootstrap v4.5: https://getbootstrap.com/docs/4.5/gettingstarted/introduction

Sr.No	Name of IDE or Tools	Operating System
1	HTML 5.0, CSS 2.1 , JavaScript 10.1, Bootstrap 5.0 onwards	Window Operating System
2	HTML 5.0, CSS 2.1 , JavaScript 10.1, Bootstrap 5.0 onwards	Red Hat /Linux / Ubuntu

F.Y.B.C.A (Science) Advanced Database Management Systems

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Advanced Database Management Systems
Course Code	21SBCA123
Semester	II
No. of Credits	04

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To study fundamental concepts of RDBMS (PL/Pgsql)
2.	To study database management operations
3.	To study data security and its importance
4.	To study client server architecture

Sr. No.	Learning Outcome
1.	Formulate SQL queries using advanced SQL features.
2.	Perform Database operations using PL/PostgreSQL.
3.	Compare and contrast different concurrency control and recovery techniques.
4.	Apply mechanisms for database security.

Unit No	Title with Contents	No. of Lectures
Unit I	Relational Database Design	10
	1. PL/Postgre SQL: Language structure	1
	2. Controlling the program flow	1
	i. conditional statements	
	ii. loops	1
	3. Views	2
	4. Functions	1
	5. Handling errors and exceptions6. Cursors	2
	7. Triggers	2
Unit II		10
	Transaction Concepts	
	1. Transaction	4
	i. Properties of transactionii. States of transactions	
	iii. Concurrent execution of transactions	
	iv. conflicting operations	
	2. Schedules	2
	i. Types of schedules,	
	3. Concept of serializability	4
	ii. Precedence graph for serializability	
Unit III	Concurrency Control	10
	1. Ensuring serializability by locks	2
	i. Different lock modes	
	2. 2PL and its variations	1
	3. Multiple Granularity locking protocol	1
	4. Basic timestamp method for concurrency	1
	5. Thomas Write Rule	1
	6. Locks with multiple granularity i. Dynamic database concurrency (Phantom	-
	Problem)	
	7. Timestamps versus locking	1
	8. Optimistic concurrency control algorithm	1
	i. Multi version concurrency control	_
	9. Deadlock handling methods –	2
	i. Detection and Recovery	
	a. Wait for graph	
	ii. Prevention algorithms	
	a. Wound-wait	
	b. Wait-die	
	iii. Deadlock recovery techniques	
	a. Selection of Victim,	
	b. Starvation,	

	c. Rollback	
Unit IV	Crash Recovery	10
	1. Transaction Failure classification	1
	2. Recovery concepts	2
	3. Checkpoints	1
	4. Recovery with concurrent transactions	2
	ii. Rollback	2
	i. Checkpoints	
	ii. commit	
	5. Log base recovery techniques	1
	 Deferred and Immediate update 	
	6. Buffer Management	1
	7. Database backup	1
	8. Recovery from catastrophic failures	1
	9. Shadow paging	1
Unit V	Database Security	10
	1. Introduction to database security concepts	1
	2. Methods for database security	2
	3. Access Control Method	2
	 Discretionary access control method 	_
	ii. Mandatory access control	
	iii. Role based access control for multilevel	
	security 4. Use of views in goodwith enforcement	2
	4. Use of views in security enforcement 5. Overview of engryption technique for goverity	
	5. Overview of encryption technique for security6. Statistical database security	1
	U. Staustical uatabase security	2
Unit VI	Database System Architectures	10
	1. Types Of Architecture	4
	i. Centralized Architecture	
	ii. Client – Server Architectures	
	iii. Server System Architectures	4
	2. Types Of System	
	i. Introduction to Parallel Systems	
	ii. Introduction to Distributed Systems	
	3. Introduction to Object Based Databases	2

- **1.** Abraham Silberschatz, Henry F. Korth and S. Sudarshan, "Database System Concepts", McGraw-Hill Education.
- 2. Atul Kahate, "Introduction to Database Management Systems", Pearson Education.
- **3.** C. J. Date, A. Kannan and S. Swamynathan, "An Introduction to Database Systems", Pearson Education
- 4. Joshua D. Drake, John C Worsley, "Practical PostgreSQL", O'Reilly Publications

Website Reference Link:

- **1.** Learn DBMS Database Management System Tutorial : https://www.tutorialspoint.com/dbms/index.htm
- **2.** DBMS Tutorial | Database Management System javatpoint : https://www.javatpoint.com/dbms-tutorial
- **3.** PostgreSQL: The world's most advanced open source database : https://www.postgresql.org/
- **4.** PostgreSQL Tutorial Learn PostgreSQL from Scratch : https://www.postgresqltutorial.com/

Sr.No	Name of IDE or Tools	Operating System
1	Postgresql 11.0 onwards	Window Operating System
2	Postgresql 11.0 onwards	Red Hat /Linux / Ubuntu

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Introduction to Computer Organization

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Introduction to Computer Organization
Course Code	21SBCA124
Semester	II
No. of Credits	04

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To study number system, logic gates
2.	To understand combinational and sequential circuits
3.	To provide a broad overview of architecture and functioning of computer systems
4.	To learn the basic concepts behind the architecture and organization of computers.

Sr. No.	Learning Outcome
1.	Design of combinational circuits
2.	Design of sequential circuits
3.	Explain block diagram of CPU, Memory and types of I/O transfers

Unit No	Title with Contents	No. of Lectures
Unit I	Data representation and Computers Arithmetic	10
	1. Introduction to Decimal, Binary and Hexadecimal Number Systems and their inter- conversions	2
	2. BCD code, Gray code, Excess-3 code and ASCII	2
	3. Concept of parity code.	2
	4. Signed and Unsigned numbers	2
	5. Binary arithmetic,1's and 2's complement of	2
	binary numbers, Binary subtraction using 1's	
	and 2's complement	
Unit II	Boolean Algebra & Logic Gates	10
	 Logic gates (With their symbols) NOT AND OR NAND NOR NOR XOR XOR Boolean Equation and truth table Universal gates Boolean theorems, Boolean Laws, De Morgan's Theorem, Reduction of Logic expression using 	4
	Boolean Algebra, Deriving Boolean expression from given circuit, Implementation of other gates using universal gates 3. Karnaugh Maps i. Introduction ii. Reduction technique using Karnaugh maps - 2/3/4 variable K-maps iii. Grouping of variables in K-maps iv. minimize Boolean expression using K-map and obtain K-map from Boolean expression	2

Unit III	Combinational Circuits	10
	1. Introduction	2
	i. Code converters design	
	ii. Implementations	2
	2. Arithmetic Circuits	
	i. Half Adder	
	ii. Full Adder	
	iii. Parallel Adder	
	iv. BCD Adder	
	v. Binary Subtractor	
	3. Study of Multiplexer and Demultiplexer,	2
	4. Study of Encoder and Decoder	2
	5. ALU, Digital Comparator	2
Unit IV	Sequential circuits	10
	1. Flip Flop	4
	i. Introduction	
	ii. Terminologies used	
	iii. S-R flip-flop	
	iv. D flip-flop	
	v. JK flip-flop	
	vi. T flip-flop	
	vii. Application of flip-flops	
	2. Counters	2
	i. Introduction	
	ii. Asynchronous counter	
	iii. Terms related to counters	
	iv. IC7493 (4-bit binary counter)	
	v. Synchronous counter	
	vi. Type T Design	
	vii. Type JK Design	
	viii. Pre-settable counter	
	3. Concept of modulus Counters	2
	i. IC 7490	
	4. Shift Register	2
	i. Introduction	
	ii. Parallel and Shift registers	
	iii. Ring counter	
	iv. Johnson counter	

Unit V	CPU, Memory and I/O Organization	10
	1. Block diagram of CPU, functions of CPU, general register organization, flags, Concept of RISC and CISC, Introduction to hardwired	3
	and micro-programmed CPU.	
	2. Memory System hierarchy, Cache Memory,	3
	Internal Memory, External Memory, Concept	
	of Virtual Memory, Memory parameters	
	(Access time, speed, capacity, cost)	
	3. Input/ Output	4
	i. Need of I/O interfaces	
	ii. block diagram of general I/O interface	
	iii. Concept of DMA	
	iv. DMA transfer	
	v. Serial communication	
	a. Synchronous	
	b. asynchronous and their data	
	transmission formats	
Unit VI	Introduction to Microprocessors ,Microcontrollers and	10
	Single Board Computers	
	1. Introduction to Microcontroller Intel 8051	3
	2. Introduction to Microprocessor, difference	3
	between microcontroller and microprocessor,	
	Functional block diagram of Intel 8051and	
	their function.	4
	3. Introduction to Embedded systems using single	4
	board computers (SBC) Single boards	
	computer block diagram, types, Comparison of	
	SBC models, Specifications	

- 1. R.P. Jain, "Modern Digital Electronics", McGraw-Hill Publications.
- 2. Floyd and Jain, "Digital Fundamentals", Pearson Publication
- 3. Morris Mano, "Computer System Architecture", Prentice-Hall.

Website Reference Link:

- **1.** Tutorial Points https://www.tutorialspoint.com/microprocessor/microcontrollers_overview.htm
- 2. Electronic Tutorials: https://www.electronics-tutorials.ws/boolean/bool_7.html

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Lab I: Data Structures using C

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Lab I: Data Structures using C
Course Code	21SBCA125
Semester	II
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To understand algorithms and analysis of algorithms
2.	To learn static and dynamic data structures

F		
Sr. No.	Learning Outcome	
1.	Design an efficient algorithm for the given problem and implement it	
	using C Programming.	
2.	Apply appropriate data structures for the given problem.	
3.	Determine the time and space complexity of a given algorithm.	

Assignment No	Assignment Name	No. Of Sessions
1	1. Non-Recursive Sorting Techniques	03
1	i. Bubble Sort	03
	ii. Insertion Sort	
	2. Recursive Sorting Techniques	
	i. Quick Sort	
	ii. Merge Sort	
	3. Searching Techniques	
	i. Linear search	
_	ii. Binary Search	
2	1. Linked List	03
	2. Singly and Singly Circular Linked List	
	3. Doubly and Doubly Circular Linked List	
3	1. Stack	02
	i. Static Stack Implementation	
	ii. Dynamic Stack Implementation	
	2. Infix to postfix ,Postfix Evaluation	
4	1. Queue	02
	i. Static Queue Implementation	
	ii. Dynamic Queue Implementation	
5	1. Tree	02
	2. Binary Search Tree (Dynamic)	
6	1. Graph	02
	i. Adjacency Matrix Representation	
	ii. Adjacency List Representation	
	2. In-degree and Out-degree calculation	
	Total Number of Sessions	14

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and **handwritten write-up** of each assignment (Title, Problem Statement, Outcomes, Date of Completion, Assessment grade/marks and assessor's sign Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters with appropriate weightage. Suggested parameters include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Sr.No	Name of IDE or Tools	Operating System
1	Turbo C 3.0 onwards	Window Operating System
2	Vi Editor/GEdit 8.2 onwards & C compiler	Red Hat /Linux / Ubuntu

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Lab II: Web Technology

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Lab II: Web Technology
Course Code	21SBCA126
Semester	II
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	The main objective of the course is present the basic web	
	technology concepts that are required for	
	developing web applications.	
2.	The key technology components are descriptive languages, server side	
	program elements and client side program elements.	

Sr. No.	Learning Outcome	
1.	A student will be familiar with client server architecture and able to	
	develop a web application using java technologies.	
2.	Students will gain the skills and project-based experience needed for	
	entry into web application and development careers	

Assignment	Assignment Name	No. Of
No		Sessions
1	HTML Tags Programs	02
2	CSS Programs	03
3	JavaScript Programs	05
4	Bootstrap	04
	Total Number of Sessions	14

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and **handwritten write-up** of each assignment (Title, Problem Statement, Outcomes, Date of Completion, Assessment grade/marks and assessor's sign Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on the overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters with appropriate weightage. Suggested parameters include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

	Sr.No	Name of IDE or Tools	Operating System
	1	HTML 5.0, CSS 2.1, JavaScript 10.1,	Window Operating System
		Bootstrap 5.0 onwards	window Operating System
	2	HTML 5.0, CSS 2.1, JavaScript 10.1,	Red Hat /Linux / Ubuntu
	2	Bootstrap 5.0 onwards	Red Hat / Elliux / Obulitu

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Lab III: Advanced Database Management System

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Lab III: Advanced Database Management System
Course Code	21SBCA127
Semester	II
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	To learn advanced features in SQL such as Nested queries, Views,	
	Functions, Triggers, Cursors	
2.	To become familiar with PL/PostgreSQL	

Sr. No.	Learning Outcome	
1.	Formulate SQL queries using advanced features	
2.	Write stored procedures, cursors and triggers using PL/PostgreSQL.	
3.	Design a database using database normalization technique	

Assignment	Assignment Name	No. Of
No		Sessions
1.	Simple and Nested Queries	2
2.	Views Creation	2
3.	Stored Functions	3
4.	Cursors i. Simple Cursor ii. Parameterized Cursor	2
5.	Designing a Database using normalization theory for the given application / database design	2
6.	Error and Exception handling i. Raise Notice ii. Raise Exception	1
7.	Triggersi. Before (Insert, Update, Delete)ii. After (Insert, Update, Delete)	2
	Total Number of Sessions	14

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and **handwritten write-up** of each assignment (Title, Problem Statement, Outcomes, Date of Completion, Assessment grade/marks and assessor's sign Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on the overall performance of students. For each lab assignment, the instructor will assign grade/marks based on parameters with appropriate weightage. Suggested parameters include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Sr.No	Name of IDE or Tools	Operating System
1	Postgresql 11.0 onwards	Window Operating System
2	Postgresql 11.0 onwards	Red Hat /Linux / Ubuntu

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.C.A (Science) Lab IV: Computer Organization

2021-22 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Lab IV: Computer Organization
Course Code	21SBCA128
Semester	II
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To study architecture and functioning of computer systems
2.	To learn the basic concept behind the architecture and organization of computers

Sr. No.	Learning Outcome
1.	Design and implement combinational circuits
2.	Design and implement sequential circuits
3.	Translate real world problems into digital logic formulations

Assignment No	Assignment Name	No. Of Sessions
1	Study of Logic gates and their ICs	1
2	Study Of De Morgan's Theorem	1
3	Study of Half Adder and Full Adder	2
4	Study of Binary to Gray & Gray to Binary Converter using K-Map	2
5	Multiplexer and De-multiplexer	2
6	Study of Decimal to BCD Encoder	2
7	Study of flip-flops	2
8	Study of counter ICs: IC 7490 and designing Mod-N counters	2
	14	

The laboratory assignments are to be submitted by student in the form of journal. Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, Objectives, Problem Statement, Outcomes, software & Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign

Program codes with sample output of all performed assignments are to be submitted as softcopy. Use of DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints.

Guidelines for Assessment

Continuous assessment of laboratory work is to be done based on overall performance of student. For each lab assignment, the instructor will assign grade/marks based on parameters with appropriate weightage. Suggested parameters include- timely completion, Performance, innovation, efficient codes, punctuality and neatness.