

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

F.Y.B.Sc Statistics

(CBCS – Autonomy 21 Pattern)

STRUCTURE OF F. Y.B.SC. STATISTICS

Structure of the course for three years and the pattern of examination and question papers are as specified below

Semester	Paper	Paper	Paper title	Cred	Marl	KS	
	code			its			
					CIA	ESE	Total
1	21SBST111	I	Descriptive Statistics-I	2	20	30	50
	21SBST112	II	Discrete Probability Distributions-I	2	20	30	50
	21SBST113	III	Statistics Practical-I	1.5	20	30	50
2	21SBST121	I	Descriptive Statistics-II	2	20	30	50
	21SBST122	II	Discrete Probability Distributions-II	2	20	30	50
	21SBST123	III	Statistics Practical-II	1.5	20	30	50

CONTINUOUS INTERNAL EVALUATION (CIE) FOR B.Sc

For Continuous Internal Evaluation (CIE), Evaluation will be done continuously. Internal assessment will be of **20** marks for a paper of 50 Marks. These 20 marks are divided as follows:

- a) There will be compulsory Test on Demand MCQ Examination of **20** marks of each subject which would be converted into 0**5 Marks**.
- b) Two Class Tests 10 Marks Each. Converted to 05 Marks.
- c) Mid Sem Exam of 20 Marks converted to 05 Marks
- d) Participation in two activities at department/ college level 05 Marks
- e) In case of students failing to score under category (d), the attendance can be considered to give marks.
- f) There will be a compulsory Mock Practical Examination, Viva Voce of subjects mentioned in for 20 Marks.
- g) The subject teacher needs to adopt anyone out of the following methods for internal assessment:

Written exam	Quiz
Presentations	Projects
Assignments	Tutorials
Oral examination	Open Book Test and Others

Table 7: Methods of Internal Assessment

1) DURATION OF SEMESTER END EXAMINATION (FINAL): Question papers will be set for Thirty Marks (One and Half Hour Duration) for Theory and Thirty Marks (Three and Half Hour) for Practical Examination.

Table 8: Criteria for Paper Setting of Internal Assessment and Semester End

Examination

Knowledge	Understanding	Applications, Analysis, Problem Solving	Total Marks
50%	25%	25%	100%

2) STANDARD OF PASSING:

A student must obtain a minimum of 40% marks in Continuous Internal Evaluation (CIE), and minimum 40% marks in Practical Examination and Semester End Examination (External Examination).

- Passing separately in Internal Assessment, Practical Examination and Semester End Examination is compulsory.
- The student has to secure at least 40 marks (40%) in the total assessment (50 Marks) for each subject.
- Students who are failed in Continuous Internal Evaluation (CIE) of any semester can reappear for the same in the next semester.

PAPER-WISE DETAILED SYLLABUS

Course/ Paper Title	Descriptive Statistics – I
Course Code	21SBST-111
Semester	Ι
No. of Credits	2 (2.5 Units equivalent to 1 Credit)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To enrich students' knowledge and train them in pure Statistics.
2.	To present the historical developments in Statistics to the students.
3.	To acquaint students with some basic concepts in Statistics
4.	To familiarize students with elementary statistical methods of analysis of data
5.	To introduce the computation of various measures of central tendency, dispersion, skewness and kurtosis.
6.	To acquaint students with the analysis of data pertaining to attributes and to interpret the results

Sr. No.	Learning Outcome
1.	Students will be acquainted with the different areas of Statistics

2.	Students will become aware about the role of Statistics in various	
	fields.	
3.	Students will be acquainted with the data analysis tools and	
	interpretation of the results	

Unit No	Title with Contents	No. of Lectures
Unit I	Introduction to Statistics	2
	1. Meaning of Statistics as a Science.	1
	2. Importance of Statistics.	
	3. Scope of Statistics: In the field of Industry,	
	Biological sciences, Medical sciences, Economics,	
	Social Sciences, Insurance, Psychology.	
	4. Statistical organizations in India and their functions:	1
	CSO, ISI, NSSO, IIPS (Devnar, Mumbai).	
	5. Statistical Heritage (Indian Perspective: Dr. V. S.	
	Huzurbazar, Dr. P.C. Mahalnobis, Dr. P. V.	
	Sukhatme, Dr. C. R. Rao).	
Unit II	Population and Sample	04
	1. Types of characteristics: Attributes:	1
	Nominal scale, ordinal scale, Variables:	
	Interval scale, ratio scale, discrete and	
	continuous variables, difference between	
	linear scale and circular scale.	
	2. Types of data:	1
	(i) Primary data, Secondary data.	
	(ii) Cross-sectional data, time series data.	
	3. Notion of a statistical population:	2
	Finite population, infinite population, homogeneous	

	population and heterogeneous population. Notion of a	
	sample and a random sample. Methods of sampling	
	(Description only): Simple random sampling with	
	and without replacement (SRSWR and SRSWOR),	
	stratified random sampling, systematic sampling,	
	cluster sampling and two-stage sampling.	
Unit III	Summary Statistics	14
	1. Presentation of Data. Interpretation of Data from	2
	table and graph. Data validation.	
	2. Frequency Classification: Raw data and its classification,	2
	ungrouped frequency distribution, grouped frequency	
	distribution, cumulative frequency distribution, inclusive	
	and exclusive methods of classification, Open end classes,	
	and relative frequency distribution.	
	3. Measures of Central Tendency:	
	(i) Concept of central tendency of statistical data, Statistical	1
	averages, characteristics of a good statistical average.	
	(ii) Arithmetic Mean (A.M.):Definition, effect of change of	1
	origin and scale, combined mean of a number of groups,	
	merits and demerits, trimmed arithmetic mean.	
	(iii) Mode and Median: Definition, formulae (for ungrouped	1
	and grouped data), merits and demerits. Empirical	
	relation between mean, median and mode.	
	(iv) Partition Values: Quartiles, Deciles and Percentiles (for	1
	ungrouped and grouped data), BoxPlot.	
	(v) Geometric Mean (G.M.):Definition, formula, merits and	
	demerits. Harmonic Mean (H.M.): Definition. Formula,	1
	merits and demerits. Order relation between arithmetic	
	mean, geometric mean, harmonic mean.	
	4. Measures of Dispersion:	

Unit V	1. Attributes: Concept of a Likert scale, classification,	4
Unit v		
I Init V	Theory of Attributes	08
	based on moments.	
	kurtic frequency distributions. Measures of kurtosis	
	3. Concepts of kurtosis, leptokurtic, mesokurtic and platy	2
	Measures of skewness based on moments.	
	coefficient of skewness.	
	proof), interpretation using Boxplot. Karl Pearson's	
	coefficient of Skweness lies between -1 to 1 (with	
	distribution. Bowley's coefficient of skewness: Bowley's	
	skewness, negative skewness, symmetric frequency	
	2. Concept of skewness of frequency distribution, positive	3
	moments, upto 4 th order (without proof).	
	and scale. Relations between central moments and raw	
	ungrouped and grouped data, Effect of change of origin	
	1. Raw moments for ungrouped data. Central moments for	3
Unit IV	Moments, Skewness and Kurtosis	08
	coefficient of variation(C.V.)	
	of quartile deviation and coefficient of mean deviation,	
	dispersion for comparison: coefficient of range, coefficient	
	of mean squared deviation (with proof), Measures of	
	(viii) Mean squared deviation: Definition, minimality property	2
	variance for n groups (derivation for two groups).	
	and demerits, effect of change of origin and scale, combined	
	proof), Variance and standard deviation: Definition, merits	
	merits and demerits, minimality property (without	
	Definition, merits and demerits, Mean deviation: Definition,	
	(vii) Range, Semi-interquartile range (Quartile deviation):	2
	of dispersion.	
	(vi) Concept of dispersion, characteristics of good measure	1

	frequency, order of a class, positive class-frequency,	
	negative class frequency, ultimate class frequency,	
	relationship among different class frequencies (two	
	attributes), and dot operator to find the relation between	
	frequencies, fundamental set of class frequencies.	
2	. Consistency of data upto 2 attributes.	1
3	. Concepts of independence and association of two	3
	attributes. Yule's coefficient of association	
	$(Q),-1 \le Q \le 1$, interpretation.	

- Agarwal, B. L. (2003). Programmed Statistics, Second Edition, New Age International Publishers, New Delhi.
- 2) Ghosh, J. K. and Mitra, S. K., Parthsarthi, K. R. (1993). Glimpses of India's Statistics Heritage, Wiley publishing Co.
- 3) Goon, A. M., Gupta, M. K. and Dasgupta, B. (1983). Fundamentals of Statistics, Vol. 1, Sixth Revised Edition, The World Press Pvt. Ltd., Calcutta.
- 4) Gupta, S. C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- 5) Gupta, S. C. and Kapoor, V. K. (1997). Fundamentals of Applied Statistics, Third Edition, Sultan Chand and Sons Publishers, New Delhi.
- 6) Neil A.Weiss (2016). Introductory Statistics, Tenth Edition, Pearson.
- 7) Purohit, S. G., Gore S. D., Deshmukh S. R. (2008). Statistics Using R, Narosa Publishing House, New Delhi.
- 8) Sarma, K.V.S.(2001). Statistics Made it Simple: Do it yourself on PC. Prentice Hall of India, New Delhi.
- 9) Snedecor G. W. and Cochran W. G.(1989). Statistical Methods, Eighth Ed. East-West Press.

REFERENCE WEBSITES FOR PAPER I AND PAPERII:

1.www.stats.unipune.ac.in[100DatasetsforStatisticsEducation by

Dr. Anil P. Gore, Dr. Mrs. S. A. Paranjpe and Madhav B. Kulkarni available in ISPS folder)].

- 1. www.freestatistics.tk(NationalStatisticalAgencies)
- 2. www.psychstat.smsu.edu/sbk00.htm(Onlinebook)
- 3. www.bmj.bmjournals.com/collections/statsbk/index.shtml
- 4. www.statweb.calpoly.edu/bchance/stat-stuff.html
- 5. www.amstat.org/publications/jse/jse-data-archive.html(International journal onteachingand learning ofstatistics)
- 6. www.amstat.org/publications/chance(Chancemagazine)
- 7. www.statsci.org/datasets.html(Datasets)
- 8. www.math.uah.edu/stat(VirtuallaboratoriesinStatistics)
- 9. www.amstat.org/publications/stats(STATS:themagazineforstudentsofStatistics)
- 10. <u>www.stat.ucla.edu/cases</u>(CasestudiesinStatistics).
- 11. www.statsoft.com
- 12. www.statistics.com
- 13. www.indiastat.com
- 14. www.unstat.un.org
- 15. www.stat.stanford.edu
- 16. www.statpages.net
- 17. www.wto.org
- 18. www.censusindia.gov.in
- 19. www.mospi.nic.in
- 20. www.statisticsofindia.in
- 21. <u>www.nationmaster.com</u> (Population studies)

F.Y.B.Sc Statistics

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Discrete Probability Distributions-I
Course Code	21SBST-112
Semester	Ι
No. of Credits	2 (2.5 Units equivalent to 1 Credit)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce the students with the basic concepts of probability
	theory.
2.	To acquaint students with axiomatic theory of probability, concept of
	random variable, probability distribution (univariate and bivariate)
	discrete random variables, expectation and moments of probability
	distribution
3.	To acquaint students to distinguish between random and non-random
	experiments.
4.	To familiarize students with the probability distribution of
	random variable (one or two dimensional) in the given
	situation.

Sr. No.	Learning Outcome	
1.	Students will be acquainted with the calculations of the probabilities	
	of events.	
2.	Students will become aware about the role of Statistics in the	
	situation of uncertainty.	
3.	Students will be acquainted with various available probability	
	models.	

Expected Course Specific Learning Outcome

Unit No	Title with Contents	No. of Lectures
Unit I	Basics of Probability	06
	1. Experiments/Models, Ideas of deterministic and non-	1
	deterministic models. Random Experiment, concept	
	of statistical regularity.	
	2. Definitions of - Sample space, Discrete sample space:	
	finite and countably infinite, Event, Elementary event,	
	Complement of an event. Certain event and	2
	Impossible event	
	Concept of occurrence of an event.	
	Algebra of events and its representation in set	
	theory notation. Occurrence of following events.	
	(i) At least one of the given events,	
	(ii) None of the given events,	
	(iii) All of the given events,	
	(iv) Mutually exclusive events,	
	(v) Mutually exhaustive events,	
	(vi) Exactly one event out of the given events.	
	3. Classical definition of probability and its limitations.	

	Probability model, probability of an event,	
	equiprobable and non-equiprobable sample	1
	space,	
	4. Axiomatic definition of probability. Theorems and	
	results on probability with proofs based on axiomatic	
	definition such as $P(AUB)=P(A)+P(B)-P(A \cap B)$.	2
	Generalization P (AUBUC), $0 \le P(A) \le 1$, P(A) +	
	$P(A') = 1$, $P(\Phi) = 0$, $P(A) \le P(B)$ when $A \subseteq B$, Boole's	
	inequality.	
Unit II	Conditional Probability and Bayes' Theorem	05
	1. Definition of conditional probability of an event.	3
	Results on conditional probability. Definition of	
	independence of two events $P(A \cap B) = P(A) \cdot P(B)$,	
	Pairwise independence and mutual independence for	
	three events, Multiplication theorem $P(A \cap B)=P(A)$	
	·P(B A). Generalization to P(A \cap B \cap C).	2
	 Partition of the sample space, prior and posterior 	
	probabilities. Proof of Bayes' theorem. Applications	
	of Bayes' theorem in real life.	
Unit III	Univariate Probability Distributions (on	03
	Discrete Sample Space)	
	1. Concept and definition of a discrete random variable.	2
	Probability mass function (p.m.f.) and cumulative	
	distribution function (c.d.f.), $F(\cdot)$ of discrete random	
	variable, properties of c.d.f	
	 Mode and median of a univariate discrete probability 	1
	distribution.	
Unit IV	Mathematical Expectation (Univariate Random Variable)	08
	1. Definition of expectation (Mean) of a random	2
	variable, expectation of a function of a random	2

	variable, m.g.f. and c.g.f. Properties of m.g.f and	
	c.g.f.	
	2. Definitions of variance, standard deviation (s.d.)	2
	and Coefficient of variation (c.v.) of univariate	
	probability distribution, effect of change of origin	
	and scale on mean, variance and s.d.	
	3. Definition of raw, central and factorial raw	2
	moments of univariate probability Distributions	
	and their interrelations (without proof).	
	4. Coefficients of skewness and kurtosis based on moments.	2
Unit V	Some Standard Discrete Probability Distributions	14
	1. Degenerate distribution (one point distribution),	1
	mean and variance.	
	2. Uniform discrete distribution, p.m.f., c.d.f., mean,	1
	variance, real life situations.	
	3. Bernoulli Distribution: p.m.f., notation and mean,	2
	variance.	
	4. Binomial Distribution: p.m.f., notation. Recurrence	4
	relation for successive probabilities, computation of	
	probabilities of different events, mean, variance, m.g.f.	
	and c.g.f. moments, skewness (comments when $p = 0.5$, p	
	> 0.5, p < 0.5). Situations where this distribution is	
	applicable. Additive property for binomial distribution.	
	5. Hypergeometric Distribution: Necessity and	3
	importance of Hypergeometric distribution,	
	capture-recapture method. p.m.f., notation.	
	6. Computation of probability, situations where this	3
	distribution is applicable, binomial approximation	
	to hypergeometric probabilities, statement of	
	mean and variance of the distribution (Derivation	
	is not expected).	
	L /	

- Agarwal B.L.(2003).Programmed Statistics, second edition, New Age International Publishers, New Delhi.
- 2. Gupta,S.C.and Kapoor,V.K.(1983).Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- Hoel P. G. (1971). Introduction to Mathematical Statistics, John Wiley and Sons, New York.
- Hogg, R.V. and Craig R.G.(1989).Introduction to Mathematical Statistics, Ed. Mac Millan Publishing Co., New York.
- Mayer, P. (1972). Introductory Probability and Statistical Applications, Addison Wesley Publishing Co., London.
- Mood,A.M.and Graybill, F.A. and Boes D.C. (1974). Introduction to the Theory of Statistics, Ed. 3, McGraw Hill Book Company.
- Rao, V L S Prakash (2008).First Course in Probability and Statistics, New Age International Publishers, New Delhi.
- Ross S.(2002). A First Course in Probability, Sixth Edition, Pearson Education, Inc.& Dorling Kindersley Publishing, Inc.

F.Y.B.Sc Statistics

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Statistics Practical – I
Course Code	21SBST-113
Semester	Ι
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To use various graphical and diagrammatic techniques and interpretation
2.	To analyse data pertaining to discrete and continuous variables and to interpret the results
3.	To compute various measures of central tendency, dispersion, skewness and kurtosis
4.	To interpret summary statistics of computer output
5.	To summarize and analyze the data using computers

Sr. No.	Learning Outcome
1.	Students will be able to use various graphical and diagrammatic

	techniques and interpretation	
2.	Students will be able to compute various measures of central	
	tendency, dispersion, skewness and kurtosis	
3.	Students will be acquainted with the usage of computers for data	
	analysis	

S.No.	Title of the experiment	No. of Practicals
1	Diagrammatic representation of statistical data:	1
	simple and subdivided bar diagrams,	
	multiplebar diagram, percentage bar diagram,	
	piediagram.	
2	Diagrammatic representation of statistical data:	1
	simple and subdivided bar diagrams,	
	multiplebar diagram, percentage bar diagram,	
	piediagram. using Ms-Excel/Any statistical	
	software	
3	Graphical representation of statistical data:	1
	Histogram, frequency curve and ogive curves.	
	Determination of mode and median graphically.	
4	Graphical representation of statistical data:	1
	Histogram, frequency curve and ogive curves.	
	Determination of mode and median graphically.	
	Using Ms-Excel/Any statistical software	
5	Tabulation	1
6	Data Interpretation from various graphs and	1
	diagrams.	
7	Use of random number tables to draw	1
	SRSWOR, SRSWR, stratified sample and	
	systematic sample.	
8	Use of random number tables to draw	1

	SRSWOR, SRSWR, stratified sample and	
	systematic sample. Using MS-Excel/Any	
	statistical software	
9	Computation of measures of central tendency	1
	and dispersion (ungrouped data). Use of an	
	appropriate measure and interpretation of results	
	and computation of partition values.	
10	Computation of Measures of skewness and	1
	kurtosis.	
11	Computation of Measures of skewness and	1
	kurtosis, Boxplot.	
12	Computation of summary statistics using Ms-	1
	Excel/Any statistical software	

F.Y.B.Sc Statistics

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Descriptive Statistics – II
Course Code	21SBST-121
Semester	ΙΙ
No. of Credits	2 (2 Units equivalent to 1 Credit)

Aims & Objectives of the Course

Sr. No.	Objectives		
1.	To acquaint students with the concept of bivariate data		
2.	To present to the students the methods of analysis of bivariate data and the related developments in Statistics.		
3.	To acquaint students with computation of correlation coefficient for bivariate data and interpret it		
4.	To familiarize students with fitting of linear, quadratic and exponential curves to the bivariate data.		
5.	To introduce the students with the concept of index numbers, a concept from Econometrics.		

Sr. No.	Learning Outcome	
1.	Students will be acquainted with the data analysis of bivariate data	
2.	Students will become aware about the correlation and regression analysis.	
3.	Students will be acquainted with the computations of correlation and regression analysis techniques and interpretation of the results	

Expected Course Specific Learning Outcome

Unit No	Title with Contents No. of Lecture		
Unit I	Correlation Analysis	10	
	1.	Bivariate data, Scatter diagram and interpretation.	3
		Concept of correlation between two variables, positive	
		correlation, negative correlation, no correlation.	
		Covariance between two variables: Definition,	
		computation, effect of change of origin and scale.	
	2.	Karl Pearson's coefficient of correlation (r):	4
		Definition, computation for ungrouped data and	
		interpretation. Properties:	
		(i) $-1 \le r \le 1$ (with proof),	
		(ii) Effect of change of origin and scale (with proof).	
	3.	Spearman's rank correlation coefficient: Definition,	3
		derivation of formula, computation and interpretation	
		(without ties). In case of ties, compute Karl	
		Pearson'scorrelation coefficient between ranks.	
		(Spearman's rank correlation coefficient formula with	
		correction for ties not expected.)	
Unit II	Fitting	g of Linear Regression Equation	10

	1. Concept of dependent and independent variabl	es. 2
	2. Identification of response and predictor variable	les and relation 2
	between them.	
	3. Meaning of regression, difference between cor	relation and 6
	regression, Connection between correlation and	d regression.
	Fitting of line $Y = a + bX$. a and b are estimated	d using least
	square method. Regression coefficient. Explain	ned and
	unexplained variation, coefficient of determination	ation, standard
	error of an estimate of line of regression	
Unit III	Fitting of Curves	08
	1. Necessity and importance of drawing second	d degree curve. 2
	2. Fitting of second degree curve $Y=a+b X + cX$	X ² , 3
	3. Fitting of exponential curves of the type Y =	ax ^b . In all these 3
	curves constants a, b, c are found out by the	method of least
	squares.	
Unit IV	Index Numbers	08
	1. Definition and Meaning, Introduction and scop	pe of 2
	Index Numbers. Various types of Index Numb	ers
	like Human Development Index, Happiness In	dex,
	BSE sensitivity Index.	
	2. Problems/considerations in the construction of	index 1
	numbers.	
	3. Laspeyre's, Paasche's and Fisher's Index num	bers. 2
	4. Consumer price index number: Considerations	in its 2
	construction. Methods of construction of const	umer
	price index number - (i) family budget method	(ii)
	aggregate expenditure method.	
	5. Shifting of base, splicing, deflating, purchasing	g 1
	power (Only introduction).	
	power (only introduction).	

- Agarwal, B. L. (2003). Programmed Statistics, Second Edition, New Age International Publishers, New Delhi.
- Goon,A.M., Gupta,M.K. and Dasgupta, B.(1983).Fundamentals of Statistics, Vol.1, Sixth Revised Edition, The World Press Pvt. Ltd., Calcutta.
- 3. Gupta,S.C.and Kapoor,V.K.(1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- 4. Gupta, S.C.and Kapoor, V.K. (1997). Fundamentals of Applied Statistics, Third Edition, Sultan Chand and Sons Publishers, New Delhi.
- Montgomery D.C, Peck E.A., Vining G.G.(2006).Introduction to Linear Regression Analysis, John Wiley and Sons
- Purohit S.G., Gore S.D., Deshmukh S.R. (2008). Statistics Using R, Narosa Publishing House, New Delhi.
- 7. Sarma, K.V.S. (2001).Statistics Made it Simple: Do it yourself on PC. Prentice Hall of India, New Delhi.
- Snedecor G.W. and Cochran W.G. (1989).Statistical Methods, Eighth Ed. East-West Press, Pvt Ltd. New Delhi.

F.Y.B.Sc Statistics

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Discrete Probability Distributions-II
Course Code	21SBST-122
Semester	II
No. of Credits	2 (2.5 Units equivalent to 1 Credit)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce the students with the concept of bivariate discrete
	probability distributions.
2.	To acquaint students with the application of standard discrete
	probability distributions defined on countable infinite sample space
	to different real life situations.
3.	To acquaint students to with the inter-relationship between different
	discrete probability distributions.
4.	To familiarize students with the concept of mathematical
	expectation of bivariate discrete random variable.

Sr. No.	Learning Outcome	
1.	Students will be acquainted with the understanding of the bivariate	
	probability distributions.	
2.	Students will become aware about the computation of bivariate	
	probabilities.	
3.	Students will be acquainted with computation of mathematical	
	expectation in case of bivariate discrete random variables.	

Unit No	Title with Contents	No. of Lectures
Unit I	Some Standard Discrete Probability Distributions	16
	1. Poisson distribution: p.m.f., m.g.f. and c.g.f. Moments,	8
	mean, variance, skewness and kurtosis. Situations where	
	this distribution is applicable. Additive property for	
	Poisson distribution.	
	2. Geometric distribution: p.m.f., Mean, variance,	8
	m.g.f. and c.g.f. Situations where this distribution is	
	applicable. Lack of memory property.	
Unit II	Bivariate Discrete Probability Distribution	06
	1. Definition of two-dimensional discrete random	1
	variable, its joint p.m.f. and its distribution	
	function and their properties.	
	2. Computation of probabilities of events in bivariate probability	2
	distribution.	
	3. Concepts of marginal and conditional probability	2
	distributions.	
	4. Independence of two discrete random variables based on joint	1
	and marginal p.m.f.s	
Unit III	Mathematical Expectation (Bivariate Random Variable)	14

1.	Definition of raw and central moments, m.g.f, c.g.f.	2
2.	Theorems on expectations of sum and product of	4
	two jointly distributed random variables.	
3.	Conditional expectation.	2
4.	Definitions of conditional mean and conditional variance.	2
5.	Definition of covariance, coefficient of correlation,	2
	independence and un-correlatedness of two variables.	
6.	Variance of linear combination of variables Var(aX+bY).	2

- Agarwal B. L. (2003). Programmed Statistics, second edition, New Age International Publishers, New Delhi.
- 2. Gupta, S.C. and Kapoor, V. K. (1983). Fundamentals of Mathematical Statistics, Eighth Edition, Sultan Chand and Sons Publishers, New Delhi.
- Hoel P. G. (1971). Introduction to Mathematical Statistics, John Wiley and Sons, NewYork.
- Hogg,R.V. and Craig R.G.(1989).Introduction to Mathematical Statistics, Ed. Mac Millan Publishing Co., NewYork.
- Mayer, P. (1972). Introductory Probability and Statistical Applications, Addison Wesley Publishing Co., London.
- Mood A.M. and Graybill F.A.and Boes D.C.(1974).Introduction to the Theory of Statistics, Ed. 3, McGraw Hill Book Company.
- Ross S. (2002). A First Course in Probability, Sixth Edition, Pearson Education, Inc.and Dorling Kindersley Publishing, Inc.

Reference Websites for Paper I and Paper II:

 1.www.stats.unipune.ac.in [100Datasets for Statistics Education by Dr. Anil P. Gore, Dr. Mrs. S. A. Paranjpe and Madhav B. Kulkarni available in ISPS folder].

- 22. www.freestatistics.tk(NationalStatisticalAgencies)
- 23. www.psychstat.smsu.edu/sbk00.htm(Onlinebook)
- 24. www.bmj.bmjournals.com/collections/statsbk/index.shtml
- 25. www.statweb.calpoly.edu/bchance/stat-stuff.html
- 26. www.amstat.org/publications/jse/jse-data-archive.html(International journal on teaching and learning of statistics)
- 27. www.amstat.org/publications/chance(Chancemagazine)
- 28. www.statsci.org/datasets.html(Datasets)
- 29. www.math.uah.edu/stat(VirtuallaboratoriesinStatistics)
- 30. www.amstat.org/publications/stats(STATS:themagazineforstudentsofStatistics)
- 31. <u>www.stat.ucla.edu/cases(CasestudiesinStatistics)</u>.
- 32. www.statsoft.com
- 33. www.statistics.com
- 34. www.indiastat.com
- 35. www.unstat.un.org
- 36. www.stat.stanford.edu
- 37. www.statpages.net
- 38. www.wto.org
- 39. www.censusindia.gov.in
- 40. www.mospi.nic.in
- 41. www.statisticsofindia.in
- 42. <u>www.nationmaster.com</u> (Population studies)

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade**M. C. E. Society's**

F.Y.B.Sc Statistics

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Statistics Practical – II
Course Code	21SBST-123
Semester	II
No. of Credits	1.5

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	To compute correlation coefficient, regression coefficients	
2.	To compute probabilities of bivariate distributions	
3.	To fit binomial and Poisson distributions to the given data	
4.	To compute probabilities of bivariate distributions	
5.	To use computer software to fit the curves to the given numerical	
	data	

Sr. No.	Learning Outcome			
1.	Students will be able to correlation coefficient along with graphical			
	representation of correlation with interpretation			
2.	Students will be able to fit line of regression to the given data			
3.	Students will be acquainted with the fitting of curves as a part of			
	data analysis			

1 Scatter di	agram, correlation coefficient	1
(ungroupe	ed data).	
2 Fitting of	line of regression of Y on X	1
3 Fitting of	second degree curve	1
4 Fitting of	exponential curve of the type $Y = ax^b$	1
5 Fitting of	Binomial distribution and	1
computat	ion of expected frequencies.	
6 Application	ons of Binomial and	1
hypergeor	metric distributions.	
7 Fitting of	Poisson distribution and	1
computat	ion of expected frequencies.	
8 Index nur	nbers.	1
9 Scatter di	agram, correlation coefficient using	1
Ms-excel	Any statistical software &	
interpreta	tion.	
10 Fitting of	a line of regression using Ms-excel /	1
Any statis	stical software & interpretation.	
11 Fitting of	second degree	1
curve usi	ng Ms-excel / Any statistical	
software	& interpretation.	
12 Fitting of	exponential curve using Ms-excel /	1
Any statis	stical software & interpretation.	