

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.Sc Zoology

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Invertebrate Diversity I
Course Code	21SBZO111
Semester	Ι
No. of Credits	2 (36 lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To understand the Invertebrate animal diversity around us.
2.	To understand the underlying principles and terminology needed in classification of animals.
3.	To understand the differences and similarities in the various aspects of classification.
4.	To be able to understand the possible group of the invertebrate observed in nature and classify them
5.	To understand our role as a caretaker and promoter of life around us.
6.	To understand the economic importance of various invertebrates

Sr. No.	Learning Outcome
1.	The student will be able to understand classify and identify diverse
	invertebrates.
2.	The student understands the importance of classification can
	effectively use the six levels of classification.

3.	The student knows the general characters of kingdom Animalia,
	phylum Protozoa, Porifera, Coelenterata, and Platyhelminthes
4.	The student can describe habit, habitat, external morphology,
	feeding and reproduction in Paramoecium
5.	The student understands the economic importance of various
	invertebrates and can use it judiciously for the betterment of
	mankind

Unit No	Title with Contents	No. of
		Lectures
Unit I	Principles of Classification:	06
	1. Taxonomy & Systematics	
	i. Taxonomy: Basic terminology and Introduction	
	a. Alpha, Beta and Gamma levels of taxonomy, Microtaxonomy	
	b. Macro taxonomy: Phenetics (numerical taxonomy, Cladistics	
	(Phylogenetic systematics), Evolutionary taxonomy (evolutionary	
	systematics)	
	c. Classical taxonomy and experimental or neo taxonomy	
	(biochemical taxonomy and Cytotaxonomy)	
	d. Significance of Taxonomy	
	ii. Systematics: Definition and introduction	
	2. Linnaean system of classification (Six levels of	
	classification: Phylum, class, order, family, genus, species)	
	3. Concept of Species: Biological and Evolutionary concept	
	4. Nomenclature:	
	i. Introduction to Binomial	
	ii. Trinomial Nomenclature	
	iii. Rules of Zoological nomenclature	
	5. Introduction to Five kingdom system	

Unit II	General Features of kingdom Animalia	02
	1. General characters of Kingdom Animalia	
	2. Classification- Protozoa and Metazoa	
Unit III	Kingdom Protista (Phylum: Protozoa)	09
	1. Introduction to Phylum Protozoa	
	2. Salient features of Phylum Protozoa	
	3. Classification of Phylum Protozoa up to classes with	
	two examples of each class (names only).	
	i. Class Rhizopoda (e.g.: Entamoeba histolytica, Arcella)	
	ii. Class Mastigophora (e.g.: Euglena viridis, Trypanosoma	
	gambiense)	
	iii. Class Ciliata (e.g. Paramoecium caudatum, Opalina	
	ranarum)	
	iv. Class Sporozoa (e.g. Plasmodium vivax, Toxoplasma gondii)	
	4. Locomotion in Protozoa: Amoeboid, Ciliary and Flagellar with	
	examples	
	5.Type Study: Paramoecium caudatum:	
	i. Classification	
	ii. Habit and Habitat,	
	iii. External morphology	
	iv. Feeding and digestion	
	v. Excretion	
	vi. Reproduction (binary fission and conjugation)	
	6. Economic importance of Protozoa	
Unit IV	Organization, symmetry, body wall and coelom in metazoa	02
	1. Grades of organization, Symmetry and Body wall:	
	Diploblastic, Triploblastic	
	2. Coelom: Acoelomate, Pseudocoelomate, Eucoelomate	

Unit V	Phylum Porifera	06
	1. Introduction and salient features of Phylum Porifera	
	2. Classification of Phylum Porifera up to classes with two	
	examples of each class (names only)	
	i. Class Calcarea (e.g.: Leucosolenia, Sycon (Scypha))	
	ii. Class Hexactinellida (e.g.: Euplectella (Venus flower	
	basket), Hyalonema (Glass sponge))	
	iii. Class Demospongiae (e.g.: Chalina (Mermaid's gloves),	
	Spongilla (fresh water sponge))	
	3. Canal system in sponges:	
	i. Ascon	
	ii. Sycon	
	111. Leucon iv Rhagon	
	4. Skeleton in sponges:	
	i. Types of Spicules: Microscleres& Megascleres, Monoaxon	
	– monactinal, diactinal, Amphidiscs, Triaxon, Polyaxon	
	ii. Spongin fibres.	
	5. Regeneration in sponges.	
	6. Economic importance of Phylum Porifera.	
Unit VI	Phylum: Cnidaria	05
	1. Introduction and salient features of Phylum Cnidaria	
	2. Classification of Phylum Cnidaria up to class level with given	
	examples of each class (names only)	
	i. Class Hydrozoa (e.g.: Hydra, Physalia (Portuguese man of	
	war))	
	ii. Class Scyphozoa (e.g.: Aurelia (Jelly fish), Leucernaria	
	(trumpet shaped Jellyfish))	
	iii. Class Anthozoa (e.g.; <i>Metridium</i> (Common sea anemone))	
	3. Polymorphism in Hydrozoa	
	4. Economic importance of Cnidarians with reference to Corals	
	and Coral reefs.	

Unit VII	Phylum Platyhelminthes	03
	1. Introduction and salient features of Phylum Platyhelminthes	
	2. Classification of Phylum Platyhelminthes up to classes with	
	two examples of each class (names only)	
	i. Class: Turbellaria (e.g.: Dugesia, Bipalium)	
	ii. Class: Trematoda (e.g.: Fasciola hepatica, Schistosoma	
	haematobium)	
	iii. Class Cestoda: (e.g., Taenia saginata (Beef tape worm),	
	Echinococcus granulosus (Dog tapeworm))	
	7.3. Economic importance of Platyhelminthes	
Unit VIII	Model organisms	03
	1. Introduction and salient features of model organisms	
	2. Hydra as a model organism	

- 1. Anderson, D.T (Ed): Invertebrate Zoology 1988, Oxford University Press
- 2. Barnes, R.D.: Invertebrate Zoology, V Edition 1982, Holt Saunders International Edition
- 3. Barnes, R.S.K., Calow, P., Olive, P.J.W., Golding, D.W. and Spicer, J.I.: The Invertebrates: A New Synthesis, III Edition 2002, Blackwell Science
- 4. Barrington, E.J.W.: Invertebrate Structure and Functions. II Edition 1979, E.L.B.S. and Nelson
- Boradale, L.A. and Potts, E. A: Invertebrates: A Manual for the use of Students, Asia Publishing Home.
- Brusca, R.C and Brusca, G. J: Invertebrate (2nd ed.) 2003, Sinauer Associates Inc., Publishers Sunderland.
- 7. Hadzi, J: The Evolution of Metazoa. 1963, Macmillan New York.
- Hyman, L. H: Invertebrates Vol I, Protozoa through ctenophore. 1940, McGraw Hill, New York
- Hyman. L. H: The Invertebrates Vol: IV, Echinodermata, the coelomate, Bilateria, 195 McGraw Hill, New York.
- 10. Kotpal, RL: Modern Text-Book of zoology, Vertebrates, Rastogi and Co., Meerut

- 11. Nigam H.C.: Zoology of Chordates, Vishal Publication, Jalandhar-144008.
- 12. Kotpal, R.L.: Phylum Protozoa to Echinodermata (series), Rastogi and Co., Meerut
- 13. Parker T.J and W.A Haswell: A textbook of Zoology, Vol –I (7th edition by Marshall and Williams (1972), Macmillan Press Ltd.
- 14. Jordan, E.L. and P.S. Verma: Invertebrate ZoologyS. Chand and Co., Ltd. Ram Nagar, New Delhi.
- 15. Russel Hunter : A Biology of higher invertebrates Macmillan and Co., Ltd., London

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.Sc Zoology

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Ecology
Course Code	21SBZO112
Semester	Ι
No. of Credits	2 (36 lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To know the basic concepts of ecosystem, population, community,
	biodiversity and conservation.
2.	To be able to speak about and write about the major concepts in
	ecology.
3.	To Know the wild life of India and latest technology used for
	conservation.
4.	To investigate current environmental problem and relate it to
	classroom concepts.
5.	To analyze interconnections among the major concepts of ecology.

Sr. No.	Learning Outcome
1.	The learners will be able to identify and critically evaluate their own
	beliefs, values and actions in relation to professional and societal
	standards of ethics and its impact on ecosystem and biosphere due to
	the dynamics in population.

2.	To understand anticipate, analyze and evaluate natural resource
	issues and act on a lifestyle that conserves nature
3.	The Learner understands and appreciates the diversity of ecosystems
	and applies beyond the syllabi to understand the local lifestyle and
	problems of the community.
4.	The learner will be able to link the intricacies of food chains, food
	webs and link it with human life for its betterment and for non-
	exploitation of the biotic and abiotic components.
5.	The working in nature to save environment will help development of
	leadership skills to promote betterment of environment.

Unit No.	Title with ContentNo. of	
		Lectures
Unit I	Introduction to Ecology 03	
	1. Concepts of Ecology:	
	i. Environment	
	ii. Population	
	iii. Community	
	iv. Ecosystem	
	v. Biosphere	
	vi. Biomes	
	vii. Autecology and synecology.	
Unit II	Ecosystem	08
	1. Types of ecosystems:	
	i. Aquatic (Freshwater, estuarine, Marine)	
	ii. Terrestrial (Forest, Grassland and Desert)	
	2. Composition of Ecosystem	
	i. Abiotic components	
	ii. Biotic components	

	3. Food chain: Detritus and grazing food chains, Food web	
	4. Energy flow in Ecosystem	
	5. Concept of Eutrophication in lakes and rivers.	
Unit III	Population 05	
	1. Characteristic of population: Density, Natality, Mortality, age	
	ratio, sex ratio,	
	2. Exponential and logistic growth, Gause's Principle with	
	laboratory experiment example	
	3. Quadrate method of sampling.	
Unit IV	Community	05
	1. Community characteristics:	
	i. Species richness	
	ii. Dominance	
	iii. Diversity	
	iv. Abundance	
	v. Vertical stratification,	
	2. Eco tone and edge effect	
	3. Ecological succession with one example, Hydrosere and	
	Xerosere	
Unit V	Animal interactions	05
	1. Introduction to Animal interactions	
	2. Types of Animal interactions with at least two suitable	
	examples of each	
	i. Competition: Interspecific and intraspecific	
	ii. Beneficial Associations: Commensalism	
	iii. Mutualism Antagonistic associations: Parasitism Prey	
	predation	

Unit VI	Biodi	versity and conservation	10
	1. Bio	odiversity and diversity conservation of natural resources.	
	2. Wildlife of India.		
	3. Introduction		
	i.	Remote sensing	
	ii.	GIS and radio tagging for wild life monitoring	
	iii.	Sustainable development	
	iv.	In-situ and Ex-situ conservation	
	4. Po	llution and its impact on biosphere	
	i.	Air pollution	
	ii.	Water pollution	
	iii.	land pollution	

- 1. Colinvaux, P. A.: Introduction to Ecology. II Edition 1993, Wiley, John and Sons, Inc.
- 2. Krebs, C. J. : Ecology: The Experimental Analysis of Distribution and Abundance, 6th Edition, 2001 Pearson
- 3. Odum, E.P.: Fundamentals of Ecology 2008, Indian Edition. Brooks/Cole
- 4. Robert Leo Smith: Ecology and field biology, Harper and Row publisher
- 5. Ricklefs: Ecology. V Edition, 2000, R.E. Chiron Press
- 6. Sharma P.D.: Ecology and Environment 2002, Himalaya Publication

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.Sc Zoology

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practical based on 21SBZO111and 21SBZO112
Course Code	21SBZO113
Semester	Ι
No. of Credits	1.5 (46.8 lectures of 50 minutes)

Sr. No.	Learning Outcome
1.	The student will be able to identify and classify animals based on their
	characters of phyla - Protozoa, Porifera, Coelenterata, and
	Platyhelminthes
2.	The student will be able prepare <i>Paramoecium</i> culture to study their
	structure and reproduction
3.	The student can interpret the body organization through permanent
	slides.
4.	The student can maintain <i>Hydra</i> culture in laboratory
5.	The student cananalyze and estimate physicochemical parameters of
	water
6.	The student can calculate and analyze various components of
	biodiversity such as density, abundance etc.
7.	The student can maintain and use basic equipments needed in wildlife
	studies

Sr. no.	Unit- IInvertebrate Diversity –I	
1.	Museum Study of phylum Protozoa: Euglena, Paramecium, Amoeba	
	and Plasmodium sp.	
2.	Museum study of Phylum Porifera: Sycon, Euplectella, Chalina and	
	Spongilla.	
3.	Museum study of phylum Cnidaria: Hydra, Physalia, Aurelia and	
	Metridium.	
4.	Museum Study of phylum Platyhelminthes: Planaria, Faciola hepatica	
	and Taenia saginata	
5.	Study of Paramecium: Culture, External morphology, Conjugation and	
	Binary fission.	
6.	Study of permanent slides:	
	i. Spicules and Gemmules in Sponges	
	ii. T.S. of <i>Sycon and</i> T.S. of <i>Hydra</i>	
	iii. Taenia solium: Scolex and Gravid proglottid	
7.	Identification of any three museum specimen with help of taxonomic	
	identification key.	
8.	Visit to Zoological survey of India/ Museum/National Park.	
9.	i. Culture and maintenance of <i>Hydra</i> ,	
	ii. Regeneration and Foot staining in <i>Hydra</i>	
Sr. no.	Unit – IIEcology	
1.	Estimation of Dissolved oxygen from given water sample.	
2.	Estimation of Water Alkalinity from given water sample.	
3.	Study of animal community structure by quadrate method (Field or	
	Simulation) and determination of density, frequency and abundance of	
	species.	
4.	Demonstration of basic equipment needed in wildlife studies use, care	

	and maintenance (Compass, Binoculars, Spotting scope, Range Finders,
	Global Positioning System, Various types of Cameras and lenses)
5.	Study of microscopic fauna of freshwater ecosystem (from pond).
6.	Estimation of water holding capacity of given soil sample.
7.	Estimation offree carbon dioxide from water sample.
8.	Study of Eutrophication in lake/river. OR
	Study of polluted site to check the impact of human activities.

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.Sc Zoology

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Invertebrate Diversity –II
Course Code	21SBZO121
Semester	П
No. of Credits	2 (36 lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To understand the Invertebrate animal diversity around us.
2.	To be able to understand the possible group of the invertebrate observed in nature and classify them
3.	To understand our role as a caretaker and promoter of life around us.
4.	To understand the economic importance of various invertebrates
5.	To understand external and internal morphology of invertebrates

Sr. No.	Learning Outcome
1.	The student will be able to describe the general characters of phyla –
	Aschelminthes, Annelida, Arthropoda, Mollusca and Echinodermata
2.	The student will be able to identify and classify members of phyla –
	Aschelminthes, Annelida, Arthropoda, Mollusca and Echinodermata
	up to class
3.	The student can evaluate the economic importance of various

	invertebrates from phyla – Aschelminthes, Annelida, Arthropoda,	
	Mollusca and Echinodermata and is capable of using it judiciously	
	for the betterment of mankind	
4.	Discuss the importance of earthworm as friend of farmer w.r.t	
	vermicomposting	
5.	Describe habit, habitat, external characters, feeding and reproduction	
	and regeneration of Asterias rubens as a representative case of	
	Echinodermata	

Syllabus

Unit No	Title with Contents	No. of
		Lectures
Unit I	Phylum Aschelminthes	07
	1. Introduction and salient features of phylum Aschelminthes	
	2. Classification of Phylum Aschelminthes (Class Nematoda	
	only with two examples – Ascaris lumbricoides (common	
	round worm), Wuchereria bancrofti (Elephantiasis).	
	3. Type Study: Ascaris lumbricoides: Habit, habitat and lifecycle	
	4. Economic importance of class Nematoda.	
Unit II	Phylum Annelida	05
	1. Introduction and salient features to Phylum Annelida	
	2. Classification of Phylum Annelida up to classes with	
	examples of following classes (names only).	
	i. Class Polychaeta e.g.: Nereis pelagica (nereis/ sand worm),	
	Aphrodita aculeata (Aphrodite/ sea mouse)	
	ii. Class Oligochaeta e.g.: <i>Pheretima posthuma</i> (earthworm),	
	iii. Class Hirudinea e.g.: Hirudinaria granulosa (common cattle	
	leech)	
	3. Economic importance of Annelida with reference to earthworms	
	as friend of farmer and in their role in vermicomposting.	

Unit III	Phylum Arthropoda	08
	1. Introduction and Salient features of Phylum Arthropoda	
	2. Classification of Phylum Arthropoda with specific classes	
	and mentioned examples (names only)	
	i. Class: Crustaceae.g. Palaemon palaemon (Prawn) Brachyura	
	spp.(crabs)	
	ii. Class: Chilopoda e.g. Scolopendra sp. (centipede)	
	iii. Class: Diplopoda e.g. Julus sp. (millipede)	
	iv. Class Insecta e.g.: Periplaneta americana (American	
	Cockroach), Anopheles stephensii (mosquito).	
	v. Class: Arachnida e.g. Spiders, Buthus sp. (scorpion)	
	3. Mouth parts in insects:	
	i.Mandibulate (cockroach)	
	ii.Piercing and sucking (female Anopheles mosquito)	
	iii.Siphoning type (housefly)	
	4. Economic importance of Arthropoda with emphasis on useful and	
	harmful insects	
Unit IV	Phylum Mollusca	05
	Introduction to Phylum Mollusca	
	1. Salient features of Phylum Mollusca	
	2. Classification of Phylum Mollusca with specific classes and	
	mentioned examples (names only)	
	i. Class Gastropoda e.g. Pila globosa (apple snail)	
	ii. Class Pelecypoda e.g.: Lamellidens marginalis(Bivalve)	
	iii. Class Polyplacophora e.g. Chiton	
	iv. Class: Cephalopoda e.g. Octopus vulgaris (common octopus),	
	Sepia officinalis (common Cuttle fish)	
	3. Economic importance of Mollusca.	

Unit IV	Study of Phylum Echino	dermata	11
	1. Introduction to Phylun	n Echinodermata	
	2. Salient features of Phy	lum Echinodermata.	
	3. Classification of Phyl	um Echinodermata with specific classes	
	and mentioned exam	ples (names only)	
	i. Class Asteroidea e	.g. Asterias rubens (sea	
	stars or starfish) C	lass: Holothuroidea e.g.	
	Holothuria sp. (sea	a cucumbers)	
	ii. Class: Echinoidea	e.g. Echinus esculentis (common sea	
	urchins)		
	iii. Class: Crinoidea (s	sea lilies or feather stars),	
	4. Type study: Asterias	rubens (Sea Star):	
	i. Classification		
	ii. Habit Habitat		
	iii. External Morpholo	ogy	
	iv. Digestive system		
	v. Water vascular Sys	stem	
	vi. Autotomy and rege	eneration	
	5. Pedicellaria in Echino	odermata:	
	i. Straight		
	ii. Crossed		
	iii. Valvate		
	iv. Tridactylous		
	v. Globigerous		
	6. Economic importance	of Echinodermata.	

- 1. Anderson, D.T (Ed): Invertebrate Zoology 1988, Oxford University Press
- 2. Barnes, R.D.: Invertebrate Zoology, V Edition 1982, Holt Saunders International Edition
- 3. Barnes, R.S.K., Calow, P., Olive, P.J.W., Golding, D.W. and Spicer, J.I.: The Invertebrates: A New Synthesis, III Edition 2002, Blackwell Science
- 4. Barrington, E.J.W.: Invertebrate Structure and Functions. II Edition 1979, E.L.B.S. and Nelson
- Boradale, L.A. and Potts, E. A: Invertebrates: A Manual for the use of Students, Asia Publishing Home.

- Brusca, R.C and Brusca, G. J: Invertebrate (2nd ed.) 2003, Sinauer Associates Inc., Publishers Sunderland.
- 7. Hadzi, J: The Evolution of Metazoa. 1963, Macmillan New York.
- Hyman, L. H: Invertebrates Vol I, Protozoa through ctenophore. 1940, McGraw Hill, New York
- Hyman. L. H: The Invertebrates Vol: IV, Echinodermata, the coelomate, Bilateria, 195 McGraw Hill, New York.
- 10. Kotpal, RL: Modern Text-Book of zoology, Vertebrates, Rastogi and Co., Meerut
- 11. Nigam H.C.: Zoology of Chordates, Vishal Publication, Jalandhar-144008.
- 12. Kotpal, R.L.: Phylum Protozoa to Echinodermata (series), Rastogi and Co., Meerut
- 13. Parker T.J and W.A Haswell: A textbook of Zoology, Vol –I (7th edition by Marshall and Williams (1972), Macmillan Press Ltd.
- 14. Jordan, E.L. and P.S. Verma: Invertebrate Zoology, S. Chand and Co., Ltd. Ram Nagar, New Delhi.
- 15. Russel Hunter: A Biology of higher invertebrates, Macmillan and Co., Ltd., London

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y.B.Sc Zoology

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Cell biology
Course Code	21SBZO122
Semester	П
No. of Credits	2 (36 lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To know the basic concepts of cell biology, its branches and
	application in recent world,
2.	To be able to differentiate between prokaryotic and eukaryotic cells
	To know the cellular components are their function and
	interrelations.
3.	To know the recent technique used in cell biology research.
4.	To link knowledge of cell biology with cause of diseases related to
	cell physiology.
5.	To understand the cellular components and mechanisms of cell
	division and cause of abnormal cellgrowth.

Sr. No.	Learning Outcome
1.	The learner will understand the importance of cell as a structural and
	functional unit of life.
2.	The learner understands the difference between the prokaryotic and
	eukaryotic cells and extrapolates it to the aspect of development and

	evolution.
3.	The learner understands the dynamism of bio membranes and its
	working mechanism responsible for our performance in life
4.	The learner understands the cellular mechanisms its functioning that
	depends on endo-membranes and structures. They are best studied
	with microscopy.

Unit No	Title with Contents	No. of
		Lectures
Unit I	Introduction:	04
	1. Introduction cell biology	
	2. Importance of Cell Biology and its applications in industry.	
	3. Introduction to Prokaryotic and Eukaryotic cells.	
	4. Structure of Prokaryotic cell (E. coli)	
	5. Structure Eukaryotic cells (Animal)	
Unit II	Techniques in Cell Biology:	08
_	1. Introduction	
	2. Microscopy and principle of various microscopes:	
	i. Phase contrast microscope	
	ii. Confocal microscopy	
	iii. Electron microscopy (EM)- scanning EM and scanning	
	transmission EM (STEM)	
	iv. Fluorescence microscopy;	
	3. Analytical tools and techniques	
	i. Flow cytometry- fluorochromes,	
	ii. Separation-Sub-cellular fractionation- differential and density	
	gradient centrifugation;	
	4. Stains and dyes: Types of Stain: Acidic, basic and neutral. Dyes	

Unit III	Plasma Membrane:	06
	1. Introduction of plasma membrane	
	2. Structure of plasma membrane: Fluid mosaic model.	
	3. Transport across membranes:	
	i. Active and Passive transport	
	ii. Facilitated transport	
	iii. exocytosis, endocytosis, phagocytosis	
	iv. Vesicles and their importance in transport.	
	4. Other functions of Cell membrane in brief Protection, cell	
	recognition, shape, storage, cell signaling.	
	5. Cell Junctions:	
	i. Tight junctions	
	ii. Gap junctions	
	iii. Desmosomes.	
Unit IV	Nucleus: Structure and function	04
	1. Introduction to Nucleus	
	2. Structure of Nucleus:	
	i. Nuclear envelope	
	ii. Nuclear pore complex	
	iii. Nucleoplasm	
	iv. Nucleolus	
	3. Chromatin: Eu-chromatin and Hetero-chromatin, nature and	
	differences. organization of chromatin,	
	4. Chromosome- Sex chromosomes, sex determination in Drosophila	
	and man.	
Unit V	Endomembrane System	04
	1. Introduction	
	2. Structure, location and Functions:	
	i. Endoplasmic Reticulum	
	ii. Golgi apparatus	
	iii. Lysosomes.	

Unit VI	Mitochondria and Peroxisomes	03
	1. Introduction	
	2. Mitochondria: ultrastructure and function of mitochondrion.	
	3. Mitochondrial DNA and importance	
Unit VII	Cell Division	07
	1. Introduction	
	2. Cell cycle (G1, S, G2, M phases),	
	3. Mitosis.	
	4. Meiosis.	
	5. Abnormal cell growth	

- Karp, G.: Cell and Molecular Biology: Concepts and Experiments. VI Edition 2010, John Wiley and Sons. Inc.
- De Robertis, E.D.P. and De Robertis, E.M.F.: Cell and Molecular Biology. VII Edition. 2006, Lippincott Williams and Wilkins, Philadelphia.
- Cooper, G.M. and Hausman, R.E.: The Cell: A Molecular Approach. V Edition. 2009, ASM Press and Sunderland, Washington, D.C.; Sinauer Associates
- Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P.: The World of the Cell. VII Edition. 2009, Pearson Benjamin Cummings Publishing, San Francisco.
- Bruce Albert, Bray Dennis, Levis Julian, Raff Martin, Roberts Keith and Watson Jame: Molecular Biology of the Cell, V Edition, 2008, Garland publishing Inc., New York and London
- 6. US Department of Health Sciences: Inside the cell 2005, NIH Publication No. 05-1051
- Lodish, H. Baltimore, D. Berk, A. Zipursky, S. L. Matsudaira, P and Darnell, J.: Molecular Cell Biology, Eds. 3, Scientific American & W. H. Freeman. New York.
- 8. Powar C B.: Cell Biology, Himalaya Publication, Meerut

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practical based on 21SBZO121and 21SBZO122
Course Code	21SBZO123
Semester	П
No. of Credits	1.5 (46.8 lectures of 50 minutes)

Expected Course Specific Learning Outcome

Sr. No.	Learning Outcome
1.	The student will be able to identify and classify animals based on their
	characters of phyla – Aschelminthes to Echinodermata
2.	The student will be able explain different types of mouth parts
	observed in insects.
3.	The student can interpret the role of insects w.r.t. human beings
4.	The student can identify and analyze different mitotic stages in onion
	root tips.
5.	The student can estimate the size of buccal epithelial cells using
	micrometry, observe mitochondria and blood cells from smear
6.	The student can discuss and associate various cell organelles with
	their detailed structures on the basis of micrograph
7.	The student can demonstrate the processes like osmosis and diffusion.

Sr. no.	Invertebrate Diversity –II
1.	Museum study of Phylum Aschelminthes: Ascaris lumbricoides,
2.	Museum study of phylum Annelida: Nereis, Earthworm and Leech.

3.	Museum study of phylum Arthropoda: Prawn, Cockroach, Centipede,
	Millipede and Crab
4.	Museum study of phylum Mollusca: Pila, Chiton, Bivalve and Octopus.
5.	Museum study of phylum Echinodermata: Sea Star, Sea
	urchin, Brittle Star and sea cucumber.
6.	Study of permanent slides: Mouthparts of Insects -Mandibulate,
	Piercing and sucking, Chewing and Lapping.
7.	Types of foot and shell in Mollusca: Pila, Bivalve, Chiton and Sepia.
8.	Economic importance of honey bees, Lac insects silk
	worms, Red cotton bug, Anopheles mosquito and
	Pearl oyster
9.	Visit to a vermicomposting unit / preparation and
	maintenance of vermicomposting bin
10.	Collection and identification of insect pest from your locality/nearby
	area
Sr. no.	Cell Biology
1.	Study of Microscope: Simple and Compound microscope,
	electron microscope
2.	Micrometry: Measurement of microscopic objects
3.	Study of mitochondria from human buccal epithelial cells using
	vital stain Janus green B
4.	Preparation of blood smears to observe the blood cells
5.	Temporary preparation of mitotic cell from onion roots
6.	Study of Cell organelles (any three) by using microphotographs
7.	To study Osmosis Across a Membrane using Dialysis bags