CBCS:2021-2022

F.Y.B.Sc.

Mathematics

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to SavitribaiPhule Pune University NAAC accredited 'A' Grade

(Faculty of Science & Technology)

Syllabus of

F.Y. B.Sc. Mathematics

Choice Based Credit System Syllabus To be implemented from the academic year 2021-2022

F. Y. B. Sc.

Title of the Course: B. Sc (Mathematics)

Preamble:

Department of Mathematics, Abeda Inamdar Senior College is implementing the first syllabus of B.Sc. under autonomy in June 2021. Taking into consideration the rapid changes in Science and Technology and new approaches in different areas of Mathematics and related subjects, the Board of studies in Mathematics has prepared the syllabus of B.Sc Semester-I and Semester-II(w.e.f. 2021-22) Mathematics course under the Choice Based Credit System (CBCS).

The model curriculum was developed by U.G.C. is used as a guideline for the present syllabus.

Aims:

Sr. No.	Aims
1.	Give the students a sufficient knowledge of fundamental principles, methods, and a
	clear perception of innumerous powers of mathematical ideas and tools and know-
	how to use them bymodeling, solving, and interpreting.
2.	Reflecting the broad nature of the subject and developing mathematical tools for
	continuingfurther study in various fields of science and technology.
3.	Enhancing student's overall development and equipping them with mathematical
	modelingabilities, problem solving skills, creative talent, and power of
	communication necessary for various kinds of employment.
4.	Enabling students to develop a positive attitude towards mathematics as an
	interesting and valuable subject of study.

Objectives:

Sr. No.	Objectives
1.	A student should be able to recall basic facts about mathematics and should be able
	to displayknowledge of conventions such as notations, terminology and recognize
	basic geometrical figures and graphical displays, state important facts resulting
	from their studies.
2.	A student should get a relational understanding of mathematical concepts and
	concernedstructures and should be able to follow the patterns involved, mathematical
	reasoning.
3.	A student should get adequate exposure to global and local concerns that
	explore manyaspects of Mathematical Sciences.
4.	A student should get adequate exposure to global and local concerns that explore
	manyaspects of Mathematical Sciences.
5.	A student should be able to apply their skills and knowledge that is, translate
	information presented verbally into mathematical form, select and use appropriate
	mathematical formulae ortechniques to process the information, and draw the
	relevant conclusion.
6.	A student should be made aware of the history of mathematics and hence of its
	past, presentand future role as part of our culture.

Course Outcome:

Sr. No.	Outcome
1.	The mathematical maturity of students in their current and future courses shallDevelop.
2.	The student develops theoretical, applied, and computational skills.
3.	The student gains confidence in proving theorems and solving problems.

For Continuous Internal Evaluation (CIE), Evaluation will be done continuously. Internal assessment will be of **20** marks for a paper of 50 Marks. These 20 marks are divided as follows: CIE for 2 Credits Theory Paper: It will be divided as follow:

Sr. No.		Components	Marks
1.	CIE I	There will be a compulsory Test on	
		Demand MCQ Examination of 20 marks of	5
		each subject which would be converted	
		into 5 Marks.	
2.	CIE II	Two Class Tests 10 Marks Each.	5
		Converted to 5 Marks.	
3.	CIE III	Mid Sem Exam of 20 Marks converted to	5
		05 Marks.	
4.	CIE IV	Participation in two activities at	5
		department/ college level 05 Marks	
	1	In case of students failing to score under	
		category (d), the attendance can be	
		considered to give marks	
		Total	20

CIE for 1.5 Credits Practical Paper: It will be divided as follow:

Sr. No.		Components		
1	CIE I	CIE I There will be a compulsory Mock		
		Practical Examination, Viva Voce of		
		subjects mentioned in for 20 Marks.		
l			20	

Methods of Internal Assessment

Written exam	Quiz
Presentations	Projects
Assignments	Tutorials
Oral examination	Open Book Test and Others

Structure of the F.Y.B.Sc Mathematics course:

	Semester-I		Semester-	П	Continuous Internal Evaluation (CIE) (Internal Marks)	End Semester Exam (External Marks)	Total Marks	Credits
Paper-I	21SBMT111	Foundation of	21SBMT1	Co-ordinate	20	30	50	2
		Mathematics	21	Geometry				
Paper-II	21SBMT112	Calculus-I	21SBMT1	Calculus-II	20	30	50	2
			22					
Paper-III	21SBMT113	Operation	21SBMT1	Abstract	20	30	50	1.5
		Research and	23	Algebra				
		Software		and				
		Maxima		Softwar				
				e				
				Maxima				

Structure of S. Y. B. Sc. Mathematics Courses:

	Semester-III		Semester-IV		Credit
Paper-I	21SBMT231	Calculus of Several Variables	21SBMT241	Linear Algebra-I	2
Paper-II	21SBMT232A	Laplace Transform and Fourier Series	21SBMT242A	Vector Calculus	2
	21SBMT232B	Computational Geometry	21SBMT242B	Combinatorics	2
Paper-III	21SBMT233	Numerical Analysis and Scilab	21SBMT243	Ordinary Differential Equation and Scilab	1.5

Structure of T. Y. B. Sc. Mathematics Courses:

Sem	ester-V	Se	mester-	Credit	
VI					
21SBMT351	Metric Spaces	21SBMT361	Complex Analysis	2	
21SBMT352	Real Analysis-I	21SBMT362	Real Analysis-II	2	
21SBMT353	Practical Course on	21SBMT363	Practical Course on	2	
	Metric Spaces and		Complex Analysis		
	Real Analysis-I		and Real Analysis-		
			Π		
21SBMT354	Group Theory	21SBMT364	Ring Theory	2	
21SBMT355	Partial Differential	21SBMT365	Number Theory	2	
	Equations				
21SBMT356	Practical Course on	21SBMT366	Practical Course on	2	
	Group Theory and		Ring Theory and		
	Partial Differential		Number Theory		
	Equations				
	Select Ar	y Two Out Of S	Six	I	
	Courses				
21SBMT357A	Operations	21SBMT367A	Optimization	2	
	Research		Technique		
21SBMT357B	C- Programming	21SBMT367B	C-Programming	2	
21SBMT357C	Python Course - I	21SBMT367C	Python Course - II	2	
21SBMT357D	Machine Learning	21SBMT367D	Machine Learning	2	
	Course - I		Course - II		
21SBMT357E	Lattice Theory	21SBMT367E	Differential	2	
			Geometry		
21SBMT357F	Graph theory	21SBMT367F	Lebesgue	2	
			Integration		

21SBMT358	Practical based on	21SBMT368	Practical based on	2
	papers selected		papers selected	
	from SBMT357A		from SBMT367A	
	to SBMT357F		to SBMT367F	
Skill enhancement course				
21SBMT359	Skill	21SBMT369	Skill	2
	Enhanceme		Enhanceme	
	nt Course-		nt Course-	
	LATEX-I		LATEX-II	
21SBMT3510	Skill Enhancement	21SBMT3610	Skill Enhancement	2
	Course-Geogebra		Course-SAGE	

All three above courses are compulsory.

Semester-I

21SBMT111- Foundation of Mathematics

Course/ Paper Title	Foundation of Mathematics
Course Code	21SBMT111
Semester	Ι
No. of Credits	2

Unit No	Unit No Title with Contents			
Unit I	Sets Relations and Functions			
	1. Basic terminologies of sets, Operations on	2		
	sets, Family of sets, Power sets, Cartesian			
	product of sets.			
	2. Basic definitions of functions, One-one, onto functions and	3		
	bijections, Composition of functions, Inverse of a function,			
	Image of subsets under functions, Inverse image of subsets			
	under functions. (Excluding theorem only examples)			
	3. Relations on sets, Types of relations, Equivalence	3		
	relations, Equivalence classes, and partitions of sets.			
Unit II	Divisibility Theory in the Integers	10		
	1. Basic terminologies of sets, Operations on	5		
	sets, Family of sets, Power sets, Cartesian			
	product of sets.			
	2. The Division Algorithm, The Greatest Common Divisor, The	5		
	Euclidean Algorithm.			
Unit III	Primes and the theory of Congruence	08		
	1. The Fundamental Theorem of Arithmetic: Prime Numbers,	3		
	Euclid's Lemma.			
	2. Basic Properties of Congruence.	2		

	3. Fermat's Theorem.	3
Unit IV	Complex Numbers	10
	1. Sums and Products, Basic Algebraic	4
	Properties, Moduli, Complex Conjugates,	
	Exponential Form, Products and Quotients, De-	
	Moivre's theorem.	
	2. Roots of Complex Numbers: The n th roots of unity.	4
	3. Regions in Complex Plane.	2

1. A Foundation Course in Mathematics, Ajit Kumar, S. Kumaresan and Bhaba Kumar Sarma, Narosa Publication House.

Unit I: Chapter 2: Sec. 2.1 to 2.5, Chapter 3: Sec. 3.1 to 3.6, Chapter 4: Sec. 4.1 to 4.4.

2. Elementary Number Theory, David M. Burton, Tata McGraw Hill, Sixth Edition

Unit II: Chapter 1: Sec. 1.1, Chapter 2: Sec. 2.2 to 2.4.

Unit III: Chapter 3: Sec. 3.1, Chapter 4: Sec. 4.1, 4.2, Chapter 5: Sec. 5.2.

3. Complex Variables and Applications, James Ward Brown and Ruel V. Churchill, Mc-Graw Hill, Seventh Edition.

Unit IV: Chapter 1: Sec 1 to 10.

Reference Books:

- 1. Textbook of Algebra, S. K. Shah and S. C. Garg, Vikas Publishing House Pvt. Ltd. Edition 2017.
- 2. Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and Sons Inc, Fourth Ed.

Website:

- 1. <u>https://www.youtube.com/watch?v=md5UCR7mcIY</u>
- 2. https://www.youtube.com/watch?v=C2qIoHkhEuM&list=PLOzRYVm0a65cpVtcdj_5SBEh6V QvC

Course/ Paper Title	Calculus-I
Course Code	21SBMT112
Semester	I
No. of Credits	2

Unit No	Title with Contents	No. of
Unit No		Lectures
Unit I	Real Numbers	08
	1. The Algebraic and Order properties of R:	2
	Algebraic properties of R, Order properties of R,	
	Well-Ordering Property of N.Arithmetic mean-	
	Geometric mean inequality, Bernoulli's	
	inequality. (Revision: essential properties should	
	be revised with illustrative examples)	
	2. Absolute Value and the Real Line:	2
	Absolute value function and its	
	properties, triangle inequality and its	
	consequences, a neighborhood of a	
	point on a real line.	
	3. The Completeness Property of R:	2
	Definitions of Upper bound, Lower bound,	
	supremum, infimum of subsets ofR,	
	completeness property of R.	
	4. Applications of the Supremum Property:	2
	property and its consequences, The density	
	theorem (withoutproof).	
Unit II	Sequences	10
	1. Sequences and Their Limits:	2
	Definition and examples of sequences of real	
	numbers, Definition of the limit ofsequence	

	and uniqueness of limit, Examples on the limit	
	of a sequence.	
	2.Limits Theorems:	2
	Definition of bounded sequence, Every	
	convergent sequence is bounded, Algebra	
	of limits.	2
	3.Monotone Sequences:	
	Definition and examples of monotone	
	sequences, Monotone convergence	
	theorem, and examples	
	4. Subsequences and Bolzano -Weierstrass Theorem:	2
	Definition of subsequence and examples,	
	Divergence criteria, Monotone	
	Subsequence theorem (without proof),	
	Bolzano -Weierstrass theorem (firstproof).	
	5. Cauchy Criterion: Definition and	2
	examples.	
	examples.	
Unit III	Limits	08
Unit III		08 2
Unit III	Limits	
Unit III	Limits 1. Functions and their Graphs:	
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of	
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function	
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise	
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing	
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry,	
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions.	2
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions. 2. Limits of Functions:	2
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions. 2. Limits of Functions: Definition of cluster point and examples, the	2
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions. 2. Limits of Functions: Definition of cluster point and examples, the definition of the limit of a function, the	2
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions. 2. Limits of Functions: Definition of cluster point and examples, the definition of the limit of a function, the sequential criterionfor limits, divergence	2
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions. 2. Limits of Functions: Definition of cluster point and examples, the definition of the limit of a function, the sequential criterionfor limits, divergence criteria.	2
Unit III	Limits 1. Functions and their Graphs: Functions, domain and range, graphs of functions, representing a function numerically, and Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions. 2. Limits of Functions: Definition of cluster point and examples, the definition of the limit of a function, the sequential criterionfor limits, divergence criteria. 3. Limit Theorems:	2

	4. Some extension of limit concepts:	2
	One-sided limits, infinite limits (without proof).	
Unit IV	Continuity	10
	1. Continuous Functions:	4
	Definition of continuous function at a point, the sequential	
	criterion for continuity, Divergence criterion, combination of	
	continuous functions.	
	2.Continuous Functions on Intervals:	6
	Properties of continuous functions on an interval, Boundedness	
	theorem	
	(without proof), The minimum-maximum	
	theorem(without proof), Location of roottheorem	
	(Without proof), Bolzano's intermediate value	
	theorem. Continuous function maps closed bounded	
	interval to closed bounded interval, Preservation	
	of interval theorem.	

1. Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and SonsInc, Fourth Edition.

Unit I: Chapter 2: Sec 2.1 (2.1.1 to 2.1.13), Sec. 2.2 (2.2.1 to 2.2.9), Sec. 2.3,

Sec. 2.4 (2.4.1, 2.4.3 to 2.4.6, 2.4.8, 2.4.9).

Unit II: Chapter 3: Sec. 3.1 (3.1.1 to 3.1.7, 3.1.10, 3.1.11), Sec. 3.2 (3.2.1 to

3.2.11), Sec. 3.3 (3.3.1, 3.3.4), Sec. 3.4 (3.4.1 to 3.4.3, 3.4.5 to 3.4.8), Sec. 3.5.

Unit III: Chapter 4: Sec. 4.1 (4.1.1, 4.1.3 to 4.1.9), Sec. 4.2 (4.2.1 to 4.2.8), Sec.

4.3 (4.3.1 to 4.3.9).

Unit IV: Chapter 5: Sec. 5.1, Sec. 5.2, Sec 5.3 (5.3.1 to 5.3.5, 5.3.7 to 5.3.10).

2. Thomas'Calculus, Fourteenth edition, Pearson Publication.

Unit III: Chapter 1: Sec. 1.1.

Reference Books:

1 Introduction to Real analysis, William F.Trench, Free edition, 2010.

2 Calculus of a single variable Ron Larson, Bruce Edwards, tenth edition.

Brooke Cole. Cengage Learning

3 Elementary Analysis, The Theory of Calculus, Kenneth A. Ross, Springer Publication, second edition.

4 Calculus and its Applications, Marvin L. Bittinger, David J. Ellenbogen and Scott A. Surgent, Addison Wesley, tenth edition

Website: 1. https://www.youtube.com/watch?v=fCzS8y4SBtE

2. <u>https://www.youtube.com/watch?v=wzFc9us78sM</u>

Course/ Paper Title	Operations Research and Software Maxima
Course Code	21SBMT113
Semester	Ι
No. of Credits	1.5

Unit No	Title with Contents No. of Praction	
Unit I	Basics of Operation Research	02
	1. Development of Operation Research.	
	2. Definition of Operation Research.	
	3. Characteristics of Operation Research.	
	4. Formulating the Problem	
Unit II Linear Programming		07
	1. Introduction.	
	2. Requirements for Linear Programming Problem.	
	3. Assumption in Linear Programming Models.	
	4. Application of Linear Programming Methods.	
	5. Areas of Application of Linear Programming.	
	6. Formulation of Linear Programming Problems.	
	7. Advantages of Linear Programming Methods.	
	8. Limitation of Linear Programming Models.	
	9. Graphical Method of Solution.	

	10.Some exceptional Cases.	
	11. The General Linear Programming Problem.	
	12. Canonical and Standard Forms of Linear Programming	
	Problems.	
	13. Theory of Simplex Method.	
	14. Some Important Definition.	
	15. The Simplex Method.	
Unit III	Practical Based on Maxima	03
	1. Basics: Loading Packages, Sets, Function, Complex Numbers.	
	2. Plots in 2D, Plots in 3D.	
	3. Limits, Continuity, and Sequences.	

1. Prem Kumar Gupta, Dr. D.S. Hira Operation Research S.Chand Seventh Revised

Edition 2014

Unit I: Chapter 1: Sec 1.1 to 1.3, Sec 1.12-1.

Unit II: Chapter 2: Sec 2.1 to 2.14, Sec 2.16.

Reference Books:

1. Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operation Research (Eighth Edition) Tata McGraw Hill.

2. J K Sharma, Operations Research (Theory and Applications, second edition, 2006), Macmilan India Ltd.

Website:

1.https://www.youtube.com/watch?v=a2QgdDk4Xjw&list=PLjc8ejfjpgTf0LaDEHgLB3gCHZY cNtsoX

2. <u>https://www.youtube.com/watch?v=66aKgySf9vo&list=PLLy_2iUCG87Bq8RGMTdeFZiB-87V4i9p1</u>

3. TORA and EXCEL Software, MAXIMA Software.

SEMESTER: II

Course/ Paper Title	Co-ordinate Geometry
Course Code	21SBMT121
Semester	II
No. of Credits	2

Unit No	Title with Contents	No. of Lectures
Unit I	Analytical Geometry of Two Dimension	10
	1. Change of axes: translation and rotation.	3
	2. Conic Sections: General equation of second degree in two	3
	variables	
	3. Reduction to standard form, the center of conic, nature of	4
	conic.	
Unit II	Planes	10
	1.Direction cosines and direction ratios, Equation of plane,	5
	Normal form, Transform to thenormal form, Plane passing	
	through three non-collinear points, Intercept form, Angle	
	between two planes.	
	2. Distance of a point from a plane, Distance between	5
	parallel planes, Systems of planes, twosides of planes,	
	Bisector planes.	
Unit III	Lines in three dimension	08
	1. Equations of a line in Symmetric and	4
	unsymmetrical forms, Line passing throughtwo	
	points, Angle between a line and a plane.	
	2. Perpendicular distance of a point from a	4
	plane, Condition for two lines to becoplanar	
	(without proof).	

Unit IV	Sphere	08
	1. Equation of a sphere in different forms, plane section of a	2
	sphere. 2.Equation of a circle, sphere through a given circle	3
	3. Intersection of a sphere and a line, Equation of tangent plane	3
	to a sphere.	

1. Analytic Geometry in Two and Three Dimensions : Von Steuben.

Unit I: Chapter 8: Sec, 8.4.

2. Analytical Solid Geometry: Shantinarayan; S. Chand and Company Ltd, New Delhi, 1998.

Unit II: Chapter 1:Sec. 1.6, 1.7, Chapter 2:Sec. 2.1 to 2.7.

Unit III: Chapter 3:Sec. 3.1 to 3.4, 3.7.

Unit IV: Chapter 6:Sec. 6.1 to 6.6.

Reference Book:

1. P.K.Jain and Khalil Ahmad, A Text Book of Analytical Geometry of ThreeDimensions, Wiley Eastern Ltd. 1999.

Website:

1. https://www.youtube.com/watch?v=HyWagR_

Course/ Paper Title	Calculus-II
Course Code	21SBMT122
Semester	II
No. of Credits	2

Syllabus

Unit No	Title with Contents	No. of
		Lectures
Unit I	Differentiation	10
	1. The Derivatives: Definition of the derivative of a function	5
	at a point, every differentiable function is continuous, Rules of	
	differentiation, Caratheodary's theorem (without proof), The	
	chain rule, Derivative of inverse function (without proof, only examples).	
	2. The Mean Value Theorems: Interior extremum theorem, Mean	5
	Value theorems, and theirConsequences, Intervals of increasing	
	and decreasing of a function, first derivative test for extrema	
Unit II	L'Hospital Rule and Successive	10
	Differentiation	
	1. L` Hospital Rule: Indeterminate forms, L'Hospital Rules	3
	(without proof).	_
	2. Taylor's theorem: Taylor's theorem and	3
	Maclaurin's theorem with Lagrange's form of	
	the remainder (Without proof).	4
	3. Successive Differentiation: The nth	·
	derivative and Leibnitz theorem for	
	Successive differentiation.	
Unit III	Ordinary Differential Equations	08
	1. Linear first order equations.	3
	2. Separable equations.	3

	3. Existence and Uniqueness of solutions of nonlinear equations.	2
Unit IV	Exact Differential Equations	08
	1. Transformation of nonlinear equations to separable equations.	2
	2. Exact differential equations.	2
	3.Integrating factors	4

1. Introduction to Real Analysis by R.G. Bartle and D.R. Sherbert, John Wiley and Sons, Inc., Fourth Edition.

Unit I: Chapter 6: Sec. 6.1(6.1.1 to 6.1.8), Sec 6.2(6.2.1 to 6.2.8).

Unit II: Chapter 6: Sec 6.3(6.3.1 to 6.3.7), Sec 6.4(6.4.1 to 6.4.3).

2. Differential Calculus by Shanti Narayan, Tenth Revised Edition.

Unit II: Chapter 5: Sec. 5.1 to 5.6.

3. Elementary Differential equations, William F. Trench, E-book (Free download)

Unit III: Chapter 2: Sec 2.1 to 2.3.

Unit IV: Chapter 2: Sec 2.4 to 2.6.

Reference Books:

1. Introduction to Real analysis, William F. Trench, Free edition, 2010.

2. Calculus of a single variable Ron Larson, Bruce Edwards, tenth edition.

3. Elementary Analysis, The Theory of Calculus, Kenneth A. Ross, Springer Publication, second edition.

4. Calculus and its Applications, Marvin L. Bittinger, David J. Ellenbogen and Scott A. Surgent, Addison Wesley, tenth edition.

5. Ordinary and Partial Differential Equations, M.D. Raisingania, S.

ChandAnd Company,2009.

Website:

1. <u>https://www.youtube.com/watch?v=FvYC5gB89Kc</u>

2. https://www.youtube.com/watch?v=Im242eBqaxw

Course/ Paper Title	Abstract Algebra and Software Maxima
Course Code	21SBMT123
Semester	II
No. of Credits	1.5

Unit No	Title with Contents	No. of
		Practicals
Unit I	Binary Operations	02
	1. Definitions and examples	
	2. Commutative Composition	
	3.Associative Composition	
Unit II	Isomorphic Binary Structures	03
	1. Binary Algebraic Structures	
	2. Binary Structures	
	3.Structural Property	
Unit III	Groups	03
	1. Definition and Examples	
	2. Finite Group and Group tables	
Unit IV	Practical Based on Maxima	04
	1.Analytic Geometry of two dimensions	
	2.Planes	
	3.Lines in three dimensions	
	4.Sphere	
	5.Introduction to derivatives	
	6.Products, quotients, and linear combinations	
	7.The chain rule	
	8.Solving ordinary differential equations	
	9.Direction Fields	

John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, Pearson.
 Unit I: Chapter 1- Sec 2.
 Unit II: Chapter 1- Sec 3.
 Unit IV: Chapter 1-Sec 4.

Reference Books:

- 1. M. Artin, Algebra, Prentice Hall of India, New Delhi, 1994.
- 2.P.B. Bhattacharya, S.K. Jain and S.R. Nagpal, Basic Abstract Algebra, Second Ed., Foundation Books, New Delhi, 1995.
- 3. I.N.Herstien, Topis in Algebra, John Wileyy and Sons.
- 4. Joseph. A. Gallian, Contemporary Abstract Algebra, (4th Edition), Narosa Publishing House.
- 5. D.A.R. Wallace, Groups, Rings and Fields, Springer Verlag, London, 1998.

Website:

- 1. https://www.youtube.com/watch?v=4V_KYo6sMJs
- 2. <u>https://www.youtube.com/watch?v=EiNhEl5AIwA</u>