

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Program Objectives and outcomes:

Program objectives:

1) To give the exposure to the students to become self-employed.

2) To develop the skills to make students handle instruments independently required to

perform various experiments.

3) To inculcate research aptitude in students

4) To train the student in various techniques related to Cell biology and genetics, molecular biology, genetic engineering and bioinformatics

5) To make students understand the applications of Cell biology and genetics, molecular biology, genetic engineering and bioinformatics in the field of research and industry.

Semester	Paper code	Paper Title	Number of	Number of
			credits	lectures or
				practicals
	21SBBT 231	Cell biology and microbial genetics	2	36
III	21SBBT 232	Molecular biology	2	36
	21SBBT 233	Practical in cell and molecular biology	2	12 Practicals
	21SBBT 241	Recombinant DNA technology	2	36
IV	21SBBT 242	Bioinformatics	2	36
	21SBBT 243	Practical in Recombinant DNA technology	2	12 Practicals
		and bioinformatics		

Course structure of SYBSc Vocational Biotechnology

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y.B.Sc. Biotechnology (Vocational)

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Cell Biology and Microbial Genetics
Course Code	21SBBT 231
Semester	III
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives		
1.	To make student understand the concept and structure of plant and animal		
	cells		
2.	To make the students familiar with the concepts of genetics		
3.	To inculcate the knowledge of cell membrane, membrane transport and cell		
	signaling		
4.	To make students understand the concept of operons		
5.	To introduce the concepts of cancer genetics		

Sr. No.	Learning Outcome		
1.	Students will be acquainted with the concept of and structure of cells as well		
	as cell organelles		
2.	Students will have the knowledge regarding microbial genetics and different		
	mechanisms of gene transfer		
3.	Students will understand the role of genes in oncology		

Syllabus

Unit No	Title with Contents	No. of Lectures
Credit I	Cell Biology	
1	Cell theory and morphology of cell	1
2	Types of Cells	1
	i. Plant Cell	
	ii. Animal Cell	
3	Structure and functions of cell organelles	6
	i. Golgi Complexes	
	ii. Endoplasmic Reticulum	
	iii. Lysosomes	
	iv. Nucleus	
	v. Mitochondria	
	vi. Chloroplast	
4	Cell membrane	1
	i. Components: Lipids And Proteins	
	ii. Fluid Mosaic Model	
5	Introduction to Membrane Transport	1
6	Introduction to Cell signaling	1
7	Neoplasia & Apoptosis: Intrinsic & Extrinsic pathway 2	
8	Cell junctions Cell Junction Molecules	4
	i. Selectins	
	ii. Cadherinsiii. Integrins	
	iv. Immunoglobulin superfamily	
	Types of cell junctions	
	i. Adherent	
	ii. Tight junctions	
	iii. Gap Junctions	
	iv. Desmosomes	
	v. Hemidesmosomes	
	vi. Plasmodesmata	

9	Extracellular matrix (ECM) and cell matrix interaction	1
Credit II	Microbial Genetics	(18)
1	 i. Transformation Discovery of transformation – Griffith's experiment ii. Mechanism of Transformation : Eg. Streptococcus pneumonia, Hemophillis influenzae 	3
2	Transduction: i. Concept ii. Generalized and Specialized transduction	2
3	Conjugation i. Discovery of conjugation ii. Types of conjugation (F+ ,F-, Hfr)	2
4	Recombination i. Definition of recombination ii. Types of recombination iii. Homologous recombination (Holliday model)	2
5	Transposons: i. IS elements ii. DNA transposons iii. Retrotransposons	3
6	Concept of Operons: i. Lac operon iv. Arabinose	2
7	Cancer genetics:i.Introductionii.Oncogenesiii.Tumor suppressor genesiv.Cancer and cell cycle	4

1. Molecular Cell Biology Fifth Edition by Lodish, Harvey; Berk, Arnold; Matsudaira, Paul; Kaiser, Chri published by W. H. Freeman Hardcover

2. Cell: a molecular. 5th Edition-Bruce Alberts, Alexander Johnson, Julian Lewis, Martin

Raff, Keith Roberts, Peter Walter.

3. Gene VIII- Benjamin Lewin, Publisher Pearson (16 December 2003)

4. Lehninger. A.L Principles of Biochemistrry 2nd edition 1993, CBS Publications

5. General Microbiology by Roger Y Stainer, John L Ingraham , Mark L Wheelis, Page R

Painter, Author - Roger Y Stainer, 5th edition, Macmillon publication

6. The cell: A Molecular approach by Goeffler M Cooper and Robert E Heisman, 6th Edition, ASM press 2004

7. Cell and Molecular biology by Gerald Carp, Janet Owasa, Wallace Marshall, 6th edition, Wiley Publisher.

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y.B.Sc. Biotechnology (Vocational)

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Molecular biology
Course Code	21SBBT 232
Semester	III
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives		
1.	To make students familiar with the basic knowledge of nucleic acids with		
	respect to it's structure and function		
2.	To introduce the concept of central dogma of molecular biology		
3.	To introduce the process of genome organization in prokaryotes and eukaryotes.		
4.	To make students understand the process of replication of DNA, transcription and translation process in prokaryotes and eukaryotes.		
5.	To inculcate the knowledge of post transcriptional and post translational modifications.		

Sr. No.	Learning Outcome
1.	Students will be aquianted with the knowledge of central dogma of molecular
	biology
2.	Students will understand the process, role of enzymes and proteins involved in
	the process of replication of DNA, transcription and translation.
3.	Students will have the knowledge of prokaryotic and eukaryotic genome
	organization

Syllabus

Unit No	Title with Contents	No. of Lectures
Credit I	Genome organization and replication of DNA in prokaryotes	18
1	and eukaryotes.	0.1
1	Introduction to molecular biology	01
	- Overview of structure of DNA and its components	
2	Genome organization	08
	- Prokaryotic genome organization- Features of prokaryotic	
	genome, DNA supercoiling, proteins involved in prokaryotic	
	genome organization and process of prokaryotic genome	
	organization.	
	- Eukaryotic genome organization- Features of eukaryotic	
	genome, levels of eukaryotic genome organization (Nucleosome	
	model, chromatosome model, solenoid model, scaffold model,	
	chromatid model and chromosome model)	
3	Replication of DNA	09
	- Definition and features of replication of DNA	
	- Semiconservative model of DNA (Messelson and Stahl's	
	experiment)	
	- Enzymes and proteins involved in replication of DNA	
	- Process of prokaryotic replication of DNA	
	- Overview of eukaryotic replication of DNA	
Credit II	Process of transcription of DNA and translation in	18
	prokaryotes and eukaryotes	
4	Transcription of DNA	08
	- Definition and features of transcription	
	- Enzymes and proteins involved in transcription	
	- Process of prokaryotic transcription	
	- Overview of eukaryotic transcription	
	- Post transcriptional modifications : 5' capping, 3'	
	polyadenylation, overview on intron removal	

5	Translation	09
	- Features of genetic code, Wobble hypothesis, structure of t-	
	RNA, m-RNA and ribosomes	
	- Role of enzymes and proteins involved in translation	
	- Process of Prokaryotic translation	
	- Overview of eukaryotic translation	
6	Introduction to Post translational modifications- Example -	01
	glycosylation	

1. Molecular Biology of gene, 6th Edition, James D Watson, Tania Baker

2. Genetics: A Molecular approach, Peter J Russell, 3rd edition, published by Benjamin Cummings.

3. Genes X, 10th edition (2009) Benjamin Lewin, publisher – Jones and Barlet Publishers Inc. USA

4. Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M.,

Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA.

5. Lehninger, Principles of Biochemistry. 5th Edition (2008), David Nelson & Michael Cox,

W.H. Freeman and company, NY.Biochemistry. 4th Edition(2008), Reginald Garett and

Charles Grisham, Brook/Cole, Cengage Learning, Boston, USA.

6. Molecular biology by Clark David, Pazdernik Nanette Jean, 2nd edition, Publisher Academic press

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y.B.Sc. Biotechnology (Vocational)

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practical in cell and molecular biology
Course Code	21SBBT233
Semester	III
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce the process of isolation of genomic DNA and plasmid DNA from various sources.
2.	To help students understand the concept of differencial centrifugation and it's application in isolation of sub cellular organelles
3.	To help students understand the process of quantification of DNA and RNA by spectrophotometric methods
4.	To inculcate practical knowledge of cell and molecular biology in various areas of research and industry
5.	To help students understand the role and applications of basic techniqus of cell biology and molecular biology in different areas of life science

Sr. No.	Learning Outcome
1.	Students will have the knowledge of isolation of genomic DNA and plasmid
	from a given source and it's applications in life science
2.	Students will be familiar with the concept of differencial centrifugation and it's
	applications in isolation of sub cellular organelles
3.	Students will understand the practical importance of the concepts of cell
	biology and molecular biology in research and industry.

Syllabus

Expt.	Topics	No. of
No.		Practicals
1	Isolation of Nuclei and Mitochondria	2
2	Isolation of Chloroplast and lysosome	2
3	Preparation of molecular buffers and Agarose gel elctrophoresis	2
4	Isolation of Genomic DNA extraction from bacteria	2
5	Quantification of DNA by UV spectroscopy Diphenylamine method.	1
6	Isolation of plasmid DNA from bacteria	2
7	Quantification of RNA by Orcinol method	1

References:

1. Biochemical methods by S.Sadasivam and A. Manickam, 2nd edition, New Age International (P) Ltd., Publishers.

2. Practical methods in Molecular biology by Robert F. SchleifPieter C. Wensink, llustrated edition, Springer New York Publisher.

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Semester IV

S.Y.B.Sc Biotechnology (Vocational)

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Recombinant DNA technology
Course Code	21SBBT 241
Semester	IV
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce the concept of recombinant DNA technology
2.	To help students understand the tools involved in recombinant DNA technology
3.	To make students familiar with the applications of recombinant DNA technology in various fields such as medicine, environment and industry.
4.	To help students understand the principle and process of PCR and its applications in diagnostics
5.	To inculcate the knowledge of DNA sequencing methods

Sr. No.	Learning Outcome
1.	Students will have the knowledge of basic concept of recombinant DNA
	technology
2.	Students will understand the applications of recombinant DNA technology
	in various fields like medicine, environment and industry.
3.	Students will understand the technique of DNA sequencing methods, PCR
	and it's applications in various fields.

Syllabus

Sr.No		No. of
		Lectures
Credit I	Tools used in recombinant DNA technology	18
1	Introduction to recombinant DNA technology	01
2	Enzymes used in recombinant DNA technology	04
	- Restriction enzymes and it's types, DNA ligases, DNA	
	modifying enzymes	
3	Vectors used in recombinant DNA technology	09
	- Features of an ideal vector	
	- Types of vectors - cloning vectors and expression vectors.	
	- Examples of cloning vectors-	
	I. Plasmids - pBR322	
	II. Phage vectors - Lambda insertion vectors, Replacement	
	vectors, Lambda phage genome and it's features.	
	III. Cosmids	
	IV. Artificial chromosomes - BAC, YAC	
4	Methods of introducing recombinant DNA into the host cell	04
	- Transformation method - Calcium chloride method to make	
	host cells competent	
	- Transfection methods – Electroporation, Particle gun method	
Credit II	Techniques in recombinant DNA technology	18
5	Methods for screening and selection of transformants	07
	- Non-radioactive detection methods - Use of biotin-labelled	
	probe, Use of enzyme labelled probe	
	- Blotting or hybridization techniques - Southern blotting,	
	Northern blotting, Western blotting	
6	DNA sequencing methods - Chemical method - Maxam	04
	Gilbert method - Enzymatic method - Sanger's method -	
	Automated sequencing - Pyrosequencing method	
7	Polymerase Chain reaction (PCR)	03
	- Basic principle of PCR, procedure, and applications of PCR	
	- Types of PCR -Example; RT-PCR	

8.	Applications of recombinant DNA technology - 04	
	Applications in Animal pharming and transgenic animals -	
	Example- Dolly -The sheep.	
	- Applications in Plant biotechnology - Process of delaying	
	fruit ripening by antisense RNA technology, transgenic plants	
	- golden rice	
	- Applications in medicine and diagnostics - Recombinant	
	insulin, recombinant vaccines.	
	- Applications in environment and industry	

- 1. Gene cloning and analysis, 5th edition by TA Brown
- 2. Principles of gene analysis, Sixth edition by Sandy B. Primrose and Richard Twyman

3. Singh, B. D.; Plant breeding; principles and methods, 11th edition, (2009), Kalyani Publisher, India.

4. An introduction to genetic engineering by Desmond S T Nicholl, 3rd edition, Publisher -Cambridge University Press.

5. Recombinant DNA technology by Keya Chaudhari , Publisher - The energy and resources institute, 1st edition

6. Molecular Biotechnology; Principles and applications of recombinant DNA technology, by Bernard R Glick, Jack J Pasternak, 3rd edition, Publisher -American society of Microbiology.

7. Recombinant DNA : Genes and Genomes by James Watson, Amy A Caudy, Richard M Myers, Jan A Witkowski, 3rd edition, Publisher - W H Freeman.

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Semester IV

S.Y.B.Sc Biotechnology (Vocational)

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Bioinformatics and Nanotechnology
Course Code	21SBBT242
Semester	IV
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce the concepts of bioinformatics and its application to
	students
2.	To make students aware about the use of online tools for studying
	bioinformatics and mining data
3.	To introduce the concept of nanotechnology

Sr. No.	Learning Outcome
1.	Students will get acquainted with the concepts of Bioinformatics and
	its applications
2.	Students will be able to use software for processing information
	related to genes and proteins
3.	To make students acquainted with the concept and applications of
	nanotechnology

Syllabus

Sr.No		No. of
		Lectures
Credit I	Bioinformatics	18
1	i. Introduction and Definition	2
	ii. Application in various fields	
2	Open Access Bibliographic Resources And Literature	4
	Databases:	
	i) PubMed	
	ii) PubMed Central	
	iii) BioMed Central	
	iv) Public Library of Sciences (PloS)	
3	SEQUENCE DATABASES:	4
	i. formats, querying & retrieval	
	ii. Nucleic acid sequence databases: GenBank	
	iii. Protein sequence databases: SWISS-PROT	
	iv.Specialized Genome Databases at NCBI, SANGER	
4	DATABASE SEARCHES	8
	i. Basic concepts of sequence similarity, identity and	
	homology	
	ii. Definitions of homologues, orthologues,	
	paralogues	
	iii. Scoring matrices: basic concept of a scoring	
	matrix, Matrices for nucleic acid and proteins	
	sequences, PAM and BLOSUM series, principles	
	based on which these matrices are derived.	
	iv. Keyword-based Entrez and SRS, Sequence-based:	
	BLAST & FASTA, Use of these methods for	
	sequence analysis including the online use of the	
	tools and interpretation of results from various	
	sequence and structural as well as bibliographic	
	databases.	

Credit II	Nanotechnology	18
1.	Introduction to Nanobiotechnology- History, Timelines and	3
	progress of nanotechnology, Recent advances and overview	
2.	Biological production of nanoparticles from:	4
	i. Plant Sources	
	ii. Microbial Sources	
3.	Nanobiotechnological applications in health and disease-	6
	Infectious and chronic: nanoparticle based treatments, drug	
	delivery mechanisms.	
4.	Nanobiotechnological applications in :	5
	1) Environment: Waste water and contaminated soil	
	treatment, remediation, sensors.	

1. Bioinformatics Databases, Tools and Algorithms: OrpitaBosu, SimminderKaurThukral

2. Bioinformatics Sequence and Genome Analysis, Second edition by David Mount.

3. Text Books: 1. Bioinformatics: Sequence and Genome Analysis by Mount D., Cold Spring Harbor Laboratory Press, New York. 2004

4. Bioinformatics- a Practical Guide to the Analysis of Genes and Proteins by Baxevanis,

A.D. and Francis Ouellellette, B.F., Wiley India Pvt Ltd. 2009

5. Nanobiotechnology- Concepts, applications and perspectives (2004), Christof Niemeyer

6. Nanobiotechnology- Concepts and applications, Chad A Mirkin

7. Nanotechnology in Biology and Medicine: Methods, devices and applications

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

S.Y.B.Sc. Biotechnology (Vocational)

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practical in Recombinant DNA technology and	
	Bioinformatics	
Course Code	21SBBT243	
Semester	IV	
No. of Credits	2	

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To help students understand the techniques of restriction digestion and ligation
	of DNA
2.	To introduce the knowledge of procedure of PCR, it's types and applications
	in diagnostics.
3.	To help students understand the process and technique of transformation and
	it's role in recombinant DNA technology
4.	To make students familiar with different databases of proteins and nucleic
	acids
5.	To inculcate the knowledge of concepts of bioinformatics and it's application
	in life science.

Sr. No.	Learning Outcome
1.	Students will understand the procedure and applications of PCR
2.	Students will have the knowledge of databases of proteins and nucleic acids
	and thei applications in life science.
3.	Students will the practical knowledge of various techniques of recombinant
	DNA technology and bioinformatics.

Unit No	Title with Contents	Total number of Practicals
1	Restriction digestion of DNA	1
2	Ligation of DNA	1
3	Transformation: Making host cell as competent cells	1
4	PCR	1
5	Literature mining using PubMED, PubMED central and MEDLINE	2
6	Retrieving Protein and DNA Sequences using Entrez at NCBI, SRS at EBI	2
7	Website navigation to PDB, Swissprot, and Uniprot	2
8	Perform FASTA and BLAST search for DNA and Protein Data	2

1. Biotechnology procedures and experiments handbook by S Harisha , Publisher - Jones and Bartlett Publishers Inc.

2. Techniques in biotechnology by V Kumaresan, Saras Publication.