

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1

(Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Program Objectives:

- 1. To develop conscience towards social responsibility, human values and sustainable development through curriculum delivery and extra-curricular activities
- 2. To develop scientific temperament with strong fundamental knowledge of the subject
- 3. To develop analytical thinking and problem-solving skills needed for various entrance and competitive examinations and Post Graduate Studies
- 4. To train students in laboratory skills and handling equipment along withsoft skills needed for placement

Program Outcomes:

- 1) The students will graduate with holistic development.
- 2) The students will be qualified to continue higher studies in their subject.
- 3) The students will be eligible to appear for various competitive examinations and pursue higher education.
- The students will be able to apply for the jobs with a minimum requirement of B. Sc. Program.

Program Specific Objectives and Outcomes

Program Specific Objectives:

The B.Sc. Environmental Science Program will enable the students;

PSOB-1. To develop basic understanding of Fundamentals of Environmental Science as a discipline.

PSOB-2. To bring sensitization towards the environment and also increase student competency & employability.

PSOB-3. To inculcate a sense of responsibility among students about various principles and laws of environment

PSOB-4. To encourage students about applicability of knowledge and Interdisciplinary approach in day todays life.

Program Specific Outcomes:

After successful completion of B.Sc. Environmental Science Course, student

will have:

PSOC-1. Fundamental and Advanced knowledge of theory and practical courses in Environmental science.

PSOC-2. Students will understand about how the subject knowledge helps in solving various social, economic and environment related problem

PSOC-3. Knowledge about various Environmental laws, ISO series, EMS, Standards and Ethics required to peruse higher education in the field.

PSOC-4. Knowledge about Environmental (Resource, Energy) Management, Monitoring,

introductory aspects of Environmental Biotechnology and Microbiology

PSOC-5. Skills in laboratory techniques and experience in instrument handling

Syllabus for S.Y.B. Sc. Environmental Science

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Ecological Studies
Course Code	21SBEV231
Semester	III
No. of Credits	2 (36 Lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To ensure 'well variedness' with the basic concepts of Ecology and to
	integrate ecological informatics with social science
2.	To integrate People-Planet-Profit and merging Ecological and Social
	sciences
3.	To bring sensitization towards the environment and also increase
	student competency & employability.
4.	To inculcate sense of environmental responsibility among students and
	trans-disciplinary approach
5.	To understand the concept of Carrying capacity of nature and the
	interrelationship of all forms of life with environment.

Sr. No.	Learning Outcome
1.	Students will understand the multidisciplinary nature of the subject and thus the Scope of study
2.	Students will understand the importance of ecological studies

3.	Students will understand the various types of ecosystems with structural and functional characteristics
4.	Students will understand the levels of ecological organizations,
	Community and Population ecology, cycling of nutrients and the
	concept of flow of Energy

Unit No.	Title with Contents	No. of
		Lectures
Ι	1. Introduction to basics of Ecology	06
	Basic concepts, Principals, Scope	
	Definitions: Ecology, Landscape, Habitat, Ecozones,	
	Biosphere, Ecosystems, Ecosystem stability, Autecology,	
	Synecology, Population, Community, Biome & Ecosystem	
	Ecology	
	2. Levels of Organisation –	
	i. Biological / Ecological Spectrum.	
	ii. Ecological Hierarchy by Barett et al.	
	3. Ecological Classification based on –	
	i. Taxonomic Affinity (From Kingdom to Species	
	Level Ecology).	
	ii. Habitat Types (Terrestrial & Aquatic Ecology).	
	4. Ecology of Individuals	
	Ecological niche; types of niche Eltonian niche,	
	Hutchinsonian niche, Fundamental niche, Realized niche,	
	Multidimensional niche, Trophic niche	
11		08
	1. Concept of the Ecosystem	
	2. Macro ecosystems—Forest, Grassland, Desert, Ocean, Pond	
	3. Micro-ecosystems—River, Streams, Estuary,	
	Mountains	
	4. Ecosystem Structural attributes – Abiotic & Biotic	
	Components.	
	5. Ecosystem Function : Functional attributes-	
	i. Food Chain – Grazing & Detritus.	
	ii. Food Web & Ecosystem Stability	

	a. Ecological Energetics –	
	i. Energy Input.	
	ii. Energy Flow – Single Channel & Y shaped	
	models.	
	b. Productivity of Ecosystem –	
	i. Primary Production – GPP & NPP.	
	ii. Secondary Production.	
	iii. Standing Crop (Biomass).	
	c. Ecological Pyramids – of Number,	
	Biomass & Energy with examples	
III	1 Farmeter Netwinet Carlin and 19	08
	1. Ecosystem Nutrient Cycling and Succession	
	1. Concept of –	
	a) Macro & Micro-nutrients, deficiency syndrome,	
	Functions	
	b) Nutrient Cycling—Biogeochemical Cycles –	
	• Gaseous Cycles – Hydrological, Carbon & Nitrogen	
	Cycles.	
	• Sedimentary Cycles – Phosphorus & Sulphur Cycles.	
	2. Human Impact on Biogeochemical Cycles.	
	3. Ecological succession	
	i. Causes of Succession.	
	ii. Basic Types – Primary, Secondary, Autogenic, Allogenic	
	etc.	
	iii. Mechanism of Succession –	
	a) Nudation.	
	b) Invasion.	
	c) Competition, Co-action & Reaction.	
	d) Stabilisation (Climax).	
	iv. Models of succession –Hydrosere and Lithosere.	

IV	1. Population Ecology	08
	i. Introduction & Basic Concepts.	
	ii. Population Characteristics –	
	a) Size & Density.	
	b) Dispersion – Random, Aggregate & Uniform.	
	c) Natality (Potential & Realised).	
	d) Fecundity	
	e) Mortality (Potential & Realised).	
	f) Survivorship Curves.	
	g) Age & Sex Structure.	
	h) Life Table and Viability analysis	
	2. The Concept of Carrying Capacity.	
	3. Population Growth –	
	a) Growth Curves – Exponential & Logistic.	
	b) Population Fluctuation.	
	c) Biotic Potential & Environmental Resistance.	
V	1. Community Ecology and Succession	06
	i. Characteristics of Community - Species Diversity,	
	Growth form & Structure, Dominance, Succession,	
	Trophic Structure, Ecological Niche, Ecotone & Edge	
	Effect.	
	2. Characters used in Community Structure-	
	i. Analytical Characters – Quantitative and Qualitative.	
	ii. Synthetic Characters.	
	3. Inter-specific Relationships Commensalism, Parasitism,	
	Mutualism, Symbiosis, Predation, Amensalism, Neutralism	
	4. Intra-specific Relationships Association, Aggregation,	
	Social Life, Territoriality	

- Understanding Environment; Chokkar K. B., Pandya M. & Raghunathan M.; Centre for Environment Education; Sage Publication, New Delhi.
- Ecology Principles & Applications; Chapman J. L. & Reiss M. J.; Cambridge University Press.
- 3) Fundamentals of Ecology; Odum P.E.; Natraj Publishers; Dehradun; 3 Edt..
- Ecology, Environment & Resource Conservation; Singh J.S., Singh S.P. & Gupta S.R.; Annamaya Publishers; New Delhi.
- 5) Ecology & Environment; Sharma P.D.; Rastogi Publication; Meerut; 11 Rev. Edt..
- 6) Environment Science; Tyler M.G.; Wadsworth Publishing Co.; 1997.
- Perspective in Environmental Studies; Kaushik & Kaushik; New Age International Pvt. Ltd. Publishers.
- 8) Environmental Science; Santra S.C.; New Central Book Agency (P) Ltd.; 2 Edt..
- 9) Manual for Field Ecology; Mishra R.
- 10) Gurevitch, J., Scheiner, S. M., & Fox, G. A. 2002. The Ecology of Plants. Sinauer associates incorporated
- 11) Odum, E.P. 1971. Fundamentals of Ecology. W.B. Sounders.

Syllabus for S.Y.B.Sc. Environmental Science 2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Natural Resource Conservation and its Management
Course Code	21SBEV232
Semester	III
No. of Credits	2 (36 Lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To understand the Concept of Natural Resources & its Importance
2.	To understand Generation, Extraction and impacts of Natural Resources by Human activities on the Earth's Environment
3.	To encourage Sustainable Management of Natural Resources & Minimize depletion of Natural Resources
4.	To understand Management of Resources with Case studies

Sr. No.	Learning Outcome
1.	To Understand effective Natural Resource Management strategies
2.	To inculcate values for Conservation Natural Resources

3.	To understand Sustainable Management of Resources in everyday life
4.	To train students to Conserve and Protect Natural Resources

Unit No.	Title with Contents	No. of
		Lectures
Ι	Introduction to Resources	
	1. Definition and Meaning of Natural Resources	06
	2. Classification of Natural Resources based on Origin,	
	Recovery rate, Natural & Artificial, Material & Energy	
	Resources	
	3. Importance & Scope of Natural Resources	
	4. Regenerative & Assimilative Capacity of the Earth	
	5. Man's interaction with Natural Resources	
	i. As important resource	
	ii. Waste sink	
	iii. Cultural significance	
	6. Problems and Degradation of Natural Resources	
	7. Resource Management & Conservation Methods –	
	Concept of Sustainability ,Science & Development,	
	Framework for Resource Management Strategies,	
	Approaches in Resource Management- Ecological,	
	Economic, Ethnological approach, Principles & Strategies	
	of Energy Conservation, Indian Renewable Energy	
	Programme	
II	Forest Resources & Mineral Resources	
	Forest Resources	06
	1. Functions and importance of Forest resources	
	2. Human Interaction with Forest – Over exploitation,	
	Deforestation(Causes & Effects)	
	3. Forest Management in India –JFM, EDP, Protected areas,	
	Social Forestry, Laws related to Forest Management in	
	India	

	4. Case studies related to –Timber extraction, Dam	
	construction on tribal people	
	Mineral Resources	
	1. Mineral resources definition with examples	
	2. Importance and application of Mineral Resources	
	3. Overexploitation of Mineral Resources	
	4. Mining , types of mining –Land mining & Ocean Mining	
	5. Mining & its impact on Ecosystem with case studies	
	6. Conservation of Mineral Resources	
III	Food Resources & Water Resources	
	Food Resources	08
	1. World Food Problems, Food security	
	2. Green Revolution in India –Concept, Impact in India,	
	positive and negative impacts	
	3. Agricultural intensification	
	4. Introduction to Hybrid varieties, Genetically Modified	
	Crops	
	5. Effects of Modern Agricultural Technologies	
	6. Chemical Fertilizer & Pesticide Problems in Water, Soil	
	& Environment	
	7. Organic Farming, Bio pesticides, Bio fertilizers, Crop	
	Rotation, Traditional Agricultural Methods etc	
	Water Resources	
	1. Water Resources & Its Distribution on Earth Use and	
	Over utilization of Surface & Groundwater, Pollution	
	2. Water Crisis in World & India	
	3. Conflicts over Water in World & India –Case studies	
	4. Conservation & Management of Water Resources	
	i. Traditional Methods of Water Conservation	
	ii. Rain water Harvesting & Ground water Recharge	
	iii. Water shed Management- Concept	
IV	Land & Wild life , Marine Resources	
	Land Resources	08
	1 Importance of Soil	

	2.	Soil Erosion – Causes Water & Wind Erosion &	
		Consequences of Soil Erosion	
	3.	Soil Degradation- Pollution, Use of Fertilizers, Heavy	
		metals, Plastic Pollution	
	4.	Soil Conservation Methods	
	5.	Sustainable Agriculture	
	Wild I	Life Resources	
	1.	Meaning and Definition of Wild life	
	2.	Importance of Wildlife, Causes & Threat to Wildlife	
	3.	Protection & Conservation of Wild life –Laws, Protected	
		Areas	
	Marin	e Resources	
	1.	Fisheries & other Marine Resources	
	2.	Threat to Coastal and Marine Resources	
	3.	Conservation of Marine Resources	
V	Energ	y Resources	
	1.	Classification of Energy Resources	
	2.	Introduction to waste to energy	08
	3.	Energy Crisis, Energy Scenario in World & India	
	4.	Conventional Energy Resources -Coal, Oil, Natural Gas,	
		Nuclear Energy & their impacts on Environment	
	5.	Non-Conventional Energy Resources – Solar energy,	
		Wind Energy, Hydro -electricity, Tidal energy, Ocean	
		Thermal energy, Wave energy, Bioenergy- Biomass	
		gasification & Biomass Programme, Energy Plantation	
		program, Biogas, Bio -Ethanol, Biodiesel	
	6.	Principles of Energy Management – Energy Audit	

- Owen, O.S Chiras, D.D & Reganold, J.P ,1988. Natural Resource Conservation Management for Sustainable Future (7th Edition). Prentice Hall
- Craig ,J.R ,Vaughan .D.J & Skinner .B.J. 1996 .Resources of the Earth :Origin, Use, and Environmental impacts (2nd Edition), Prentice Hall, New Jersey
- Freeman, A.M .2001.Measures of value and Resources : Resources for Future .Washington DC.
- Freeman, A.M 2003. Millennium Ecosystem Assessment : Conceptual Framework .Island Press
- Ginley , D.S & Cahen ,D.2011 .Fundamentals of Materials for Energy and Environmental Sustainability ,Cambridge University Press
- 6) Klee, G.A ,1991, Conservation of Natural Resources , Prentice Hall Publication
- 7) Miller, T.G ,2012, Environmental Science ,Wadsworth Publishing Co.
- 8) Ramade, F. 1984, Ecology of Natural Resources, John Wiley & Sons Ltd.
- Tiwari ,G.N & Ghosal .M.K , 2005, Renewable Energy Resources: Basic Principles and Applications ,Narosa Publishing House

Syllabus for S.Y.B. Sc. Practical Course on Ecological studies and Resource

Conservation

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practical Course on Ecological studies and Natural	
	Resource Conservation	
Course Code	21SBEV233	
Semester	III	
No. of Credits	2	

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	Γο understand the concept like Rain water harvesting, Watershed	
	management, water and energy audit.	
2.	To understand the importance of social media for dissemination of	
	information about various current environmental issues.	
3.	To know the importance of practical's from ecological point of view.	

Sr. No.	Learning Outcome	
1.	To know the importance of Shannon- Simpsons diversity index in understanding the phytosociology	
2.	To learn about vegetation sampling methods.	
3.	To create awareness about current environmental issues and their socio economic aspects/impacts	

Unit	Title with Contents	Practical
No.		Sessions
1	Measurement of Primary Productivity of grassland by	Field +
	Harvest Method.	Laboratory.
2	Estimation of Total Chlorophyll from plants in	Laboratory.
	Clean & Polluted Environment.	
3	Study of grassland vegetation by List Count Quadrat	Field +
	Method to determine the Frequency,	Laboratory
	Density & Abundance.	
4	Determination of Frequency & Abundance of	Field +
	Species across terrestrial – aquatic transitional zone, by	Laboratory
	Line Transect Method.	
5	Determination of Density of species across terrestrial –	Field +
	aquatic transitional zone by Belt	Laboratory
	Transect Method.	
6	Field visit to study Watershed Mgmt. Techniques.	Visit.
	(Hivre Bazaar / Ralegaon Siddhi)	
7	Continuation of the use of Social Media for e-networking	
	& dissemination of ideas on Environmental Issues	
	Pertaining to the Course.	
8	Identification of advanced cultivars in the Local market	Visit.
9	Field visit to study Rain water Harvesting technique	Visit.
10	Determination of minimum area and number of	Field +
	quadrates for vegetation	Laboratory
11	Determination of Shannon Diversity Index of a	Laboratory.
	vegetation (Data sheet)	
12	Estimation of Importance Value Index from collected	Field +
	vegetation data.	Laboratory
13	Determination of Simpson Diversity Index of a vegetation	Laboratory.
	(Data sheet)	

14	Visit to lake Ecosystem to study ecological succession	Visit
15	To study the process of Energy audit	Laboratory
16	To study the process of water audit	

- 1) Manual for Field Ecology; Mishra R.
- Handbook of Methods in Environmental Studies Vol-I ⅈ Mailti S.K.; ABD Publishers; Jaipur

Syllabus for S.Y.B. Sc. Environmental Science

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Biological Diversity & Conservation
Course Code	21SBEV241
Semester	IV
No. of Credits	2 (36 Lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce ethical values for protection, preservation and sustainable management of biological diversity
2.	To encourage incitation of sustainable use of the components of biodiversity in students
3.	To bring sensitization towards the biodiversity but also increase Student competency & employability
4	To share the benefits arising from the commercial and other utilization of biodiversity in a fair and equitable way
5.	To impart knowledge about endemic, endangered and rare species for conservation
6.	To embrace the implications of new technological forces for the future of biodiversity, science & management

Sr. No.	Learning Outcome	
---------	------------------	--

1.	Students will explore the complexity of biodiversity.
2.	Students will come to know the importance of the subject in day today's life, thus understanding the basics of threats and importance of biodiversity
3.	Students will learn about certain species' roles in an ecosystem and how life on earth is intrinsically related with conservation of biodiversity.
4.	Students will understand about how the subject knowledge helps in solving various social, economic and environment relatedproblems

Unit No.	Title with Contents	No. of
		Lectures
Ι	Introduction to Biological Diversity	06
	1. The Concept, Definition	
	2. Levels – Ecosystem, Species & Genetic.	
	3. Methods of assessment of Biological diversity	
	Ecosystem Diversity	
	1. Classification of Ecosystem –	
	a) Udvardy's Classification.	
	b) Bailey's Classification.	
	c) Olsen's Classification.	
	d) Holdridge's Classification.	
	2. Major Ecosystem types of India with	
	their physical & biological	
	characteristics.	
	3. Major Ecosystem types of the World	
	with their physical & biological	
	characteristics.	
	4. Importance of Ecosystem in maintaining	
	Ecological balance	

II	Species diversity	08
	1. Species Diversity at Local, National and International	
	Level	
	2. Special features and Latest estimates for major	
	groups of Plants, Animals & Microbes.	
	3. Measuring Species Diversity – Species Richness,	
	Species Abundance and Species Evenness.	
	4. Factors affecting global distribution of	
	Species Richness – Latitudinal, Altitudinal,	
	Rainfall gradients, temperatureetc.	
	5. Endemism –	
	a) The Concept.	
	b) Types with Examples	
	c) Endemism in India	
	6. Centers of Diversity –	
	a) The Concept.	
	b) Centers of Diversity : Analyses at Global Level –	
	7. Concept of hotspot	
	5. Myer's Hot-spots.	
	6. Mega-diversity Centers / Countries.	
	7. Western Ghat and North eastern Himalayas as a	
	Hot-spot.	
	8. India as a Mega-diversity Country	
III	Genetic Diversity	06
	1. Definition & Introduction to Genetic Variations in	
	Species	
	2. Nature & Origin of Genetic Variations	
	3. Factors affecting Genetic Diversity	
	4. Measurement of Genetic Diversity –	
	a) Based on DNA & Chromosomes.	
	b) Molecular Marker Techniques.	
	5. Transgenic Organisms.	
	6. Diversity in Domesticated Species –	
	a) Variations since the first domestication to the present.	

	b) Land Races,	
	c) Advanced Cultivars,	
	d) Wild Relatives of Cultivated Plants & Feral Plants.	
TX7		06
1V	Significance & Threat to Biodiversity	Võ
	(Significances)	
	1. Ecological Significances – Contribution of	
	Biodiversity to various Eco-Services.	
	2. Non Ecological Significances – Nutritional,	
	Medicinal, Aesthetic, Cultural, Commercial Values	
	etc.	
	3. Optional Values, Use of microorganism in	
	remediation of pollution	
	(Threats)	
	4. Threats with suitable Examples –	
	a) Large Scale Dev. Projects – Habitat	
	Destruction & Fragmentation.	
	b) Changing Agriculture & Forestry Practices.	
	c) Invasion by Introduced Species.	
	d) Over-exploitation.	
	e) Environment Pollution.	
	f) Global Climate Change.	
	g) Loss of Traditional Knowledge.	
	h) Nature of Legal & Mgmt. System – Human Wildlife	
	Conflict.	
V	1. Conservation Methods – In-situ & Ex-situ	10
	methods with Examples	
	2. National Conservation Efforts –	
	a) The laws – Environment Protection Act 1986,	
	Forest Act 1927, Wildlife Act 1972, The	
	Biodiversity Act 2002	
	b) Involving People's Participation – NBSAP, PBR	
	c) Involving Community Participation – JFM, EDP	
	d) People's Movement – Silent Valley Movement,	
	Beej Bachao Andolan	

	3. International Conservation Efforts –
a)	IUCN – The World Conservation Union.
b)	CBD.
c)	CITES.
	4. Traditional Methods of Conservation –
	Sacred Groves / Ponds / Species, Periodic
	restrictions on resource harvestingetc.
	5. Need & Awareness.
	6. Ethics of Conservation – Values of Biodiversity
	(Economic & Legal), Biopiracy, Hybridized plants,
	GM crops (benefits & criticism), , Ethical and
	Conservation issues related to uses of biodiversity,
	Global Conservation Issues
	a) b) c)

Reference Books

- 1) Gaston, K J. & Spicer, J.I. 1998. Biodiversity: An Introduction. Blackwell Science, London, UK.
- Krishnamurthy, K.V. 2004. An Advanced Text Book of Biodiversity Principles and Practices. Oxford and IBH Publications Co. Pvt. Ltd. New Delhi.
- 3) Pandit, M.K. & Grumbine R.E. 2012. Ongoing and proposed hydropower development in the Himalaya and its impact on terrestrial biodiversity. Conservation Biology 26:1061-1071.
- Primack, R.B. 2002. Essentials of Conservation Biology (3rd edition). Sinauer Associates, Sunderland, USA.
- Singh, J. S. & Singh, S. P. 1987. Forest vegetation of the Himalaya. The Botanical Review 53: 80-192.
- Singh, J. S., Singh, S.P. & Gupta, S. 2006. Ecology, Environment and Resource Conservation. Anamaya Publications, New Delhi.
- 7) Sodhi, N.S. & Ehrlich, P.R. (Eds). 2010. Conservation Biology for All. Oxford University Press.
- Sodhi, N.S., Gibson, L. & Raven, P.H. 2013. Conservation Biology: Voices from the Tropics. Wiley-Blackwell, Oxford, UK.
- Understanding Environment; Chokkar K. B., Pandya M. & Raghunathan M.; Centre for Environment Education; Sage Publication, New Delhi.
- An Advanced Textbook on Biodiversity Principles Practice; Krishnamurthy K.V.; Oxford & IBH Publishing Co. Pvt. Ltd.; New Delhi.
- Ecology Principles & Applications; Chapman J. L. & Reiss M.J.; Cambridge University Press.

- 12) Fundamentals of Ecology; Odum P.E.; Natraj Publishers; Dehradun; 3 Edt..
- 13) Ecology, Environment & Resource Conservation; Singh J.S., Singh S.P. & Gupta S.R.; Annamaya Publishers; New Delhi.
- 14) Ecology & Environment; Sharma P.D.; Rastogi Publication; Meerut; 11 Rev. Edt..
- 15) Environmental Science; Santra S.C.; New Central Book Agency (P) Ltd.; 2 Edt..

Syllabus for S.Y.B. Sc. Environmental Science

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Environmental Pollution & Control Technology
Course Code	21SBEV242
Semester	IV
No. of Credits	2 (36 Lectures of 50 minutes)

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To understand various Environmental Pollution Management
	Techniques with respect to Air, Water, Soil ,Solid waste & Noise
	Pollution
2.	To impart knowledge and skills in Management with respect to Air,
	Water, Soil ,Solid waste Management& Noise Pollution

Sr. No.	Learning Outcome
1.	Able to describe & solutions to address environmental issues including pollution
2.	To develop Environmentalist students and sensitize them towards Environmental issues

Acquiring values and attitudes towards understanding complex
environmental economic-social challenges, and participating actively in
solving current environmental problems and preventing the future ones
Adopting sustainability as a practice in life, society and industry

Unit No.	Title with Contents	No. of
		Lectures
Ι	Control of Air Pollution	
	1. Air Quality standards by WHO and National Standards	08
	2. Air Sampling Techniques	
	3. Plume Behavior	
	4. Control at Source	
	i. Raw Material change	
	ii. Process/Operational changes	
	iii. Equipment Modification /Replacement	
	5. Air Pollution Control in Industries	
	i. Condensation	
	ii. Absorption	
	iii. Adsorption	
	iv. Filtration	
	v. Electrostatic Precipitation	
	vi. Gravity Settling	
	vii. Wet Scrubbing	
	6. Control of Emissions from Automobiles	
	i. Redesigned engines	
	ii. Catalytic converters	
II	Water Quality Control Technologies	
	1. Objectives /Purpose of Water Quality Control technology	08
	2. Water Sample Collection (Types of sample, chain of	
	custody, sampling method, number of samples, sample	
	containers, sample volume etc)	
	3. Water Sample Preservation , Handling & Storage , Labeling	

	1 Wests Water Treatment	
	4. waste water Treatment	
	Sodimontation	
	ii. Secondary Treatment	
	1 Aerobic Treatment Activated Sludge Trickling	
	Filters Poteting Biological Contractors Ovidation	
	Pond	
	2 Apparohic Trastmant	
	2. Anaerobic Treatment Disinfection (Chlorination) Biogas	
	iv Advanced Treatment Carbon Advantion Paverse	
	Osmosis Jon Exchange	
	5 Concert of ZLD (Zero Liquid Discharge)	
111	S. Concept of ZED (Zero Elquid Discharge)	
111	Control of Solid Waste Pollution	
	1. Material separation Techniques & Processing –	00
	Recovery, Reuse, Recycle	08
	2. Mechanical Volume & Size Reduction –	
	1. Dewatering & Drying	
	ii. Size Reduction/Shredding	
	3. Disposal/ Management Techniques-	
	Sanitary Landfill, Composting, Incineration, Pyrolysis,	
	Injection Well, Gasification, Ocean Dumping	
	4 .Hazardous Waste Management – Waste Management	
	Treatment, Storage & Disposal	
	5. Bio-Medical Waste Management	
	Categorization, Segregation, Packaging/ Colour coding and	
	Treatment, Transport & Disposal	
IV	Control of Soil Pollution	
	1. Objectives of Soil Pollution Control	08
	2. Sampling and Sample units, sample number, frequency,	
	timing, Sampling Methodology	
	i. Site selection	
	ii. In filed sampling Techniques	
	iii. Describing the Soil Profile	
	iv. Setting Transect instrument/Equipment used	
	v. Guidelines for handling and storage of samples	

	vi. Physiochemical & Biological Parameters	
	3 Biological Methods to control Soil Pollution	
	i. To reduce dependency on chemicals-Use of Bio	
	Fertilizers, Bio-Pesticides, Conservational Tillage,	
	Mixed Cropping, Crop Rotation, Biological Pest	
	Management, Organic Farming , Soil	
	Conservational Methods	
V	Control of Noise Pollution	
	1. Noise Measuring Methods & Instruments	04
	2. Noise Control Techniques	
	i. Sound Insulation	
	ii. Sound Absorption	
	iii. Vibration Damping	
	iv. Active Noise Control/ Cancellation	
	3. Noise Control at Source	
	i. Selection & Maintenance of Machines	
	ii. Control over Vibrations	
	iii. Installations of Barriers/Enclosures	
	iv. Using Protective Equipment's	
	v. Noise Proof Walls	
		1

- 1) Environmental Chemistry, Dey A. K.; New Age International Publishers; 6 Edt.. •
- 2) Air Pollution; Rao M.N. & Rao H.V.N.; Tata McGraw Hill; New Delhi; 1989.
- Environmental Pollution Control & Environmental Engineering; Rao C. S.; Tata McGraw Hill; New Delhi; 1994.
- 4) Pollution Management; Agarwal S.K.
- 5) Environmental Science; Daniel Chiras.
- 6) Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy.
- 7) Manual for Field Ecology; Mishra R.
- Handbook of Methods in Environmental Studies Vol-I ⅈ Mailti S.K.; ABD Publishers; Jaipur.
- Physico-Chemical Examination of Water, Sewage & Industrial Effluents; Manivasakam N.; Pragati Prakashan; Meerut; 1984

- Chemical & Biological Methods for Water Pollution Studies; Trivedi R.K. & Goel P.K.; Environmental Publications; Karad; 1986.
- 11) Instrumental Methods of Analysis; Willard; cbpspd; 7 Edt..
- 12) Pollution Management; Agarwal S.K.
- 13) Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy
- 14) Advanced Air and Noise Pollution Control L.K Wang & N.C Pereira
- 15) Textbook of Noise Pollution & Its Control S.C. Bhatia
- 16) Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy
- 17) Environmental Pollution Control & Environmental Engineering; Rao C. S.; Tata McGraw Hill; New Delhi; 1994.

Syllabus for S.Y.B.Sc. Practical Course on Biodiversity and Pollution Control Technology

2022-23 (CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Re/ Paper Title Practical Course on Biodiversity and Pollution Control	
	Technology	
Course Code	21SBEV243	
Somostor	IV	
Semester	1 V	
No. of Credits	2	

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To understand the concept like Nature Interpretation Centre, in-situ and
	Ex-situ conservation, Soil sampling techniques.
2.	To understand the importance of control measures of environmental
	components like air, soil, water etc.
3.	To know about the various parameters of water and noise pollution

Sr. No.	Learning Outcome
1.	To know the importance of Shannon- Simpsons diversity index in understanding the phytosociology
2.	To learn about water and soil sampling methods.
3.	To create awareness about importance of various ecosystem form biodiversity point of view.

Unit	Title with Contents	Practical
No.		Sessions
1	Study of Water Sampling and Preservation techniques	Field +
		Laboratory
2	Determination of Optimum Dose of Alum (Coagulant)	Laboratory.
	required for water.	
3	Determination of Turbidity of water.	Laboratory.
	(Turbidometer / Nephelometer)	
4	Determination of Residual Chlorine from treated water.	Laboratory.
5	Determination of Dissolved Oxygen in water by	Laboratory.
	Winkler's method	
6	Determination of Nitrate from water (Calorimeter)	Laboratory.
7	Determination of Phosphate from water.	Laboratory.
	(Colorimeter)	
8	Determination of Soluble Salts from Soil.	Laboratory.
9	Determination of Available Nitrogen from soil.	Laboratory.
10	Measurement of sounds by DB meter / SLM in silent,	Field +
	industrial, residential and commercial zones and Analysis	Laboratory
11	Visit to Solid waste Dumping Site	Field
12	Study of wetland (source region visit) and its vegetation and	Field
	seasonal bird diversity.	
13	Visit to a sacred grove/Forest / Grassland / Marine ecosystem to	Field
	assess its biodiversity	
14	Visit to Nature Interpretation / Information	Field
	Centre.	
15	Visit to National Park / Wildlife Sanctuary to study	Field +
	Wildlife & various Inter-specific & Intra-	Laboratory
	specific Relations.	
16	Visit to Soil Survey Department.	Field +
17	Study of Soil sampling techniques	Field +
		Laboratory

- 1) Air Pollution; Rao M.N. & Rao H.V.N.; Tata McGraw Hill; New Delhi; 1989.
- Environmental Pollution Control & Environmental Engineering; Rao, C. S.; Tata McGraw Hill; New Delhi; 1994.
- 3) Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy.
- 4) Manual for Field Ecology; Mishra R.
- Handbook of Methods in Environmental Studies Vol-I ⅈ Mailti S.K.; ABD Publishers; Jaipur.
- Physico-Chemical Examination of Water, Sewage & Industrial Effluents; Manivasakam N.; Pragati Prakashan; Meerut; 1984.
- Chemical & Biological Methods for Water Pollution Studies; Trivedi R.K. & Goel P.K.; Environmental Publications; Karad; 1986.
- 8) Instrumental Methods of Analysis; Willard; cbpspd; 7 Edt..
- 9) Pollution Management; Agarwal S.K.
- 10) Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy
- 11) Advanced Air and Noise Pollution Control L.K Wang & N.C Pereira
- 12) Textbook of Noise Pollution & Its Control S.C. Bhatia
- 13) Waste Water Engineering, Treatment, Disposal & Reuse; Metcalf & Eddy
- Environmental Pollution Control & Environmental Engineering; Rao C. S.; Tata McGraw Hill; New Delhi; 1994.
- 15) Air Pollution; Rao M.N. & Rao H.V.N.; Tata McGraw Hill; New Delhi; 19