(Autonomous)

Syllabus under Autonomy F.Y. B. Sc. Electronic Science (For Computer Science)

Academic Year (2021-22)

(Under the faculty of Science and Technology)

Syllabus under Autonomy F.Y. B. Sc. Electronic Science (For Computer Science)

Titles of Papers and Scheme of Study

	Paper / subject code	Paper		Credits	Lectures/ practical	Evaluation		
SEM			Paper Title		per week	C.A.	U.E.	Total
	21SBCS111E	Ι	Principles of Analog Electronics	2	3	15	35	50
Ι	21SBCS112E	II	Principles of Digital Electronics	2	3	15	35	50
	21SBCS113E	III	Electronics Lab-IA	1.5	3	15	35	50
	21SBCS121E	Ι	Instrumentation System	2	3	15	35	50
	21SBCS122E	II	Basics of Computer Organization	2	3	15	35	50
	21SBCS123E	III	Electronics Lab-IB	1.5	3	15	35	50

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Principles of Analog Electronics
Course Code	SBCS111E
Semester	I
No. of Credits	2(36 Lectures of 50 minutes each)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	The course has been designed to introduce fundamental principles of analog electronics commonly used in engineering , IT and Industries
2	Aim is to identify the functions of different electronic components.
3	To understand the concepts, working principles and key applications of different semiconductor devices.
4	To study elementary electronic circuits

Sr. No.	Learning Outcome			
1.	Acquires the knowledge about the characteristics and working			
	principles of semiconductor diodes, Bipolar Junction Transistor, Field			
	Effect Transistor and Uni Junction Transistor.			
2.	Know about different rectifier circuits and their use in electronics and			
	communication circuits.			
3.	Design the different oscillator circuits for various frequencies			

Syllabus

Unit No	Title with Contents	No. of Lectures
Unit I	Semiconductor Diodes	10
	1. Semiconductors and its types	1
	2. P and N type semiconductors	1
	3. Formation of PN junction diode and it's working	1
	4. Forward and Reverse bias characteristics of diode	1
	5. Zener diode:	2
	i) Working principle	
	ii) Breakdown mechanism	
	iii) Characteristics	
	6. Working principle of Light Emitting Diode	1
	7. Working principle of photo diode	1
	8. Study of Opto-coupler	1
	9. Solar cell working principle and characteristics	1
Unit II	Bipolar Junction Transistor (BJT)	10
	1. Bipolar Junction Transistor (BJT)	3
	i) Symbol	
	ii) Types of BJTs	
	iii) Construction of BJTs	
	iv) Working principle of BJTs	
	2. Transistor amplifier configurations - CB, CC (only concept),	2
	3. CE configuration: Input and Output characteristics,	1
	4. Concept of Biasing: Potential Divider bias	1
	5. Transistor as amplifier (Concept of Gain and Bandwidth	1
	expected) 6. Transistor as a switch.	1
		1
Unit III	7. Relation between alpha and Beta with problems FET and UJT Transistors	1 05
	1. Symbol, types, construction, working principle	3
	 Symbol, types, construction, working principle I-V characteristics 	1
		1
	3. Specifications parameters.	1

Unit IV	POWER SUPPLY	06
	1 Block Diagram of Regulated Power Supply	1
	2 Rectifiers (half wave, full wave, and Bridge) with filter	1
	circuit	
	3 Use of Zener Diode as a Voltage Regulator	1
	4 IC 78XX and 79XX as regulator	1
	5 SMPS: Block Diagram and explanation	1
	6 UPS: Block diagram and explanation	1
Unit V	OSCILLATORS	05
	1. Barkhauson Criteria	1
	2. Low frequency Wien-bridge oscillator and problems	2
	3. High frequency crystal oscillator	1
	4. IC 555 as Astable multivibrator used as square wave	1
	generator / clock	

- 1) Floyd T.M., Jain R.P, Electronic Devices and Circuits, Prentice-Hall of India Pvt. Ltd
- 2) A.P. Malvino, Electronics Principles , Tata McGraw Hill
- 3) B.L. Thereja, Basic Electronics, S. Chand Publication
- 4) V.K. Mehta, Principle of Electronics , S. Chand Publication

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Instrumentation System
Course Code	SBCS121E
Semester	П
No. of Credits	2 (36 Lectures of 50 minutes each)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To provide basic knowledge about the various sensors and their application in Instrumentation System.
2	To study Instrumentation System
3	To study various blocks of Instrumentation System
4	To study types of data convertors.
5	To study OP-AMP characteristics and its application

Sr. No.	Learning Outcome		
1.	The students will be familiar with various types of sensors used in		
	electronic circuits		
2.	Students will be able to explain principle of operation for various		
	sensors		
3.	Students will be able to describe functional blocks of		
	Instrumentation System		
4.	Application of OP-AMP in electronic circuits to design arithmetic		
	circuits, Oscillators and as Signal Conditioning Circuit.		

Syllabus

Unit No	Title with Contents DATA CONVERTERS		No. of Lectures
Unit I			06
	1. Need of Digital to Ar	nalog converters	3
	i) Parameters		
		ed Resistive Type and R-2R ladder	
	Type DAC		
	2. Need of Analog	to Digital converters	3
	i) Parameters		
		sh ADC, Counter Type ADC,	
T I I I I		roximation ADC.	0.4
Unit II	Introduction to Instrumenta	•	04
	 Block diagram of Instruct Definition of sensor to 	-	1
	 Definition of sensor, the Classification of sensor 		1
		rs: Active and passive sensors. ensors: Accuracy, range, linearity,	1
	sensitivity, resolution, 1		1
Unit III		Smart Instrumentation System	15
	1. Types of Sensors	smart first unchauton System	9
	•••	ensor (Thermistor, LM-35), DHT11	,
	Sensor		
	ii) Optical sensor	(LDR).	
	iii) Passive Infrare		
	iv) Tilt Sensor,		
	v) Ultrasonic sens	or	
	vi) Motion sensor		
	vii) Image Sensor		2
	2. Actuators : DC Motor,	Stepper motor	1
	3. Concept of smart sen	isor	1
	4. Film sensors		1
	5. Nano Sensor		1
	6. Block diagram of Sm	nart Instrumentation system	

Unit IV		OPAMP as signal Conditioner		
	1	Concept, block diagram of Op amp	1	
	2	Basic parameters (ideal and practical): input and output	1	
		impedance, bandwidth, differential and common mode gain,		
		CMRR, slew rate,		
	3	IC741/ LM324	1	
	4	Concept of virtual ground	1	
	5	Applications of Op amp	7	
		i) Inverting and Non-Inverting amplifier		
		ii) Unity gain follower		
		iii) OpAmps as adder, Subtractor,		
		iv) Op amp as current to voltage and voltage to current		
		convertor and Voltage to frequency converter		
		v) Op amp as comparator		
		vi) Problems based on above Op Amp applications		

- 1) Prof A.D. Shaligram, Sensors and Transducers, Chinttan Publications
- 2) D. Patranabis, Sensors and Transducers, Prentice-Hall of India Pvt. Ltd
- 3) Ramakant Gaykwad, Op Amp and Linear Integrated Circuits, Pearson
- 4) V.K. Mehta, Principle of Electronics , S. Chand Publication

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Principles of Digital Electronics
Course Code	SBCS112E
Semester	Ι
No. of Credits	2 (36 Lectures of 50 minutes each)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To get familiar with concepts of digital electronics
2	To learn number systems and their representation
3	To understand basic logic gates, Boolean algebra and K-maps
4	To study arithmetic circuits and combinational circuits

Sr. No.	Learning Outcome
1.	The students will learn number systems and their inter-conversion
	between them.
2.	Using the Boolean algebra and logic circuits using Karnaugh's map
	students will be able to simplify the Boolean equations.
3.	The students will be able to design logic circuits using arithmetic
	circuits, combinational circuits and sequential circuits
4.	The students will acquire the basic knowledge of digital logic levels
	and application of knowledge to understand digital electronics circuits.
5.	Analyze, design and implement combinational logic circuits

Syllabus

Unit No	Title with Contents	No. of Lectures
Unit I	Number Systems and Digital codes	10
	1. Introduction to Decimal, Binary and Hexadecimal Number	3
	Systems And their inter- conversions,	
	2. Binary addition	1
	3. Binary subtraction using 2's complement	1
	4. Binary Coded Decimal Number	1
	5. Gray Codes: Gray to Binary and Binary to Gray	2
	conversion,	
	6. Alphanumeric representation in ASCII codes.	1
	7. Parity bits	1
Unit II	Logic gates and Boolean Algebra	14
	1. Logic gates (NOT, AND, OR, NAND, NOR, XOR gate) With	2
	their symbol, Boolean Equation and truth table, Universal	
	gates	
	2. Boolean algebra rules and Boolean Laws	2
	3. De Morgan's theorem	1
	4. Simplifications of Logic equations using Boolean algebra	3
	rules.	
	5. Introduction to Karnaugh Map,	1
	6. Problems based on the same (Upto 4 variables)	3
	7. Digital Designing using K Map for	2
	i) Gray to Binary Conversion	
	ii) Binary to Gray conversion	
Unit III	Combinational Circuits	12
	1. Introduction	1
	2. Half adder and full adder	1
	3. 4-Bit Universal adder/ Subtractor	1
	4. Applications of Ex-OR gates as parity checker and	1
	generator	
	5. Study of Multiplexer (4:1) and Demultiplexer (1:4)	1
	6. Encoders - Decimal/ BCD to binary	1

7. 3X4 Matrix Keyboard Encoder	1
8. Priority Encoder	1
9. Decoder- BCD to Seven Segment Decoder	1
10. Study of IC 74138	1
11. Study of IC 7447	1
12. Digital comparator	1

- 1) Floyd T.M., Jain R.P, Digital Fundamentals, Pearson Education
- 2) Jain R.P, Digital Electronics, Tata McGraw Hill
- 3) Malvino and Leach, Digital Principles and Applications, Tata McGraw-Hill
- 4) M. Morris Mano, Digital Design -3rdEdition, Prentice-Hall of India Pvt. Ltd
- 5) Ronald J. Tocci, Digital Systems-Principles and Applications, Prentice-Hall of India Pvt. Ltd
- 6) G. K. Kharate, Digital electronics, Oxford University Press
- 7) Anand Kumar, Fundamentals of Digital Circuits, Prentice-Hall of India Pvt. Ltd

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Basics of Computer Organization
Course Code	SBCS122E
Semester	П
No. of Credits	2 (36 Lectures of 50 minutes each)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	To get familiar with sequential circuits
2	To study Basic computer Organization
3	To study Memory architecture
4	To get familiar digital sequential circuits

Sr. No.	Learning Outcome
1.	The students will be familiar with sequential circuits.
2.	The students will understand the basics of Computer Organization
3.	The students will be able to classify semiconductor memories

Syllabus

Unit No	Title with Contents	No. of
		Lectures
Unit I	Flip Flops	07
	1. RS Flip Flop using NAND gate	2
	2. Clocked RS Flip Flop	1
	3. D Latch	1
	4. J-K Flip Flop and Master Slave J-K FlipFlops	2
	5. T flip flop	1
Unit II	Shift registers and Counters	14
	1. Introduction	1
	2. Types of Shift registers -	4
	i) Serial In Serial Out (SISO) Register	
	ii) Serial In Parallel Out (SIPO) Register	
	iii) Parallel In Parallel Out (PIPO) Register	
	iv) Parallel In Serial Out (PISO) Register	
	3. Ring Counter using D Flip flop	1
	4. Counters -Synchronous and Asynchronous type	2
	5. 3 -bit Up, Down and Up - Down counter	2
	6. Concept of modulus Counters (Timing Diagram of all above	2
	are expected)	
	7. Study IC 7490 with its internal Block Diagram and examples	2
Unit III	Basics of Computer System	08
	1 Introduction to Basic Computer Organization	1
	2 Concept of Address Bus, Data Bus, Control Bus.	1
	3 CPU Block Diagram and Explanation of each block	1
	4 Register based CPU organization	1
	5 Concept of Stack & its organization	1
	6 I/O organization:	3
	i) Need of interface	
	ii) Block diagram of general I/O interface	
	iii) Working	

Unit IV	Memory Organization	07
	1. Memory Architecture	1
	2. Memory hierarchy	1
	3. Types of Memories	2
	4. Vertical and Horizontal Memory Expansion	1
	5. Role of Cache memory	1
	6. Virtual Memory	1

- 1) Floyd T.M., Jain R.P, Digital Fundamentals, Pearson Education
- 2) Jain R.P, Digital Electronics, Tata McGraw Hill
- 3) M. Morris Mano, Digital Logic and Computer Design, Pearson Education
- 4) William Stallings, Computer Organization and Architecture, Pearson Education

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

F.Y. B. Sc.(Comp. Sc.) Electronic Science

(CBCS – Autonomy 21 Pattern)Course/ Paper TitleElectronics Laboratory-ICourse CodeSBCS113ESemesterIANo. of Credits1.5 (46.8 Lectures of 50 minutes each)

Aims & Objectives of the Course:

Sr. No.	Objectives
1	The electronics laboratory is the gateway of the electronics world.
	Hence, the practical course is intended to achieve the basic skills
	required for computer science students.
2	To get familiar with the various electronics instruments & components
	which basically equip them to design and test circuits in near future
3	To identify various Electronic Components , how to use various
	instruments like Digital Multi-Meter (DMM) to test electronic
	components, Signal Generators and Cathode Ray Oscilloscope (CRO)
4	To understand the concepts and working of various electronics devices
	like diodes , transistors , rectifier circuits, amplifiers, logic gates,
	combinational and sequential circuits.
5	To study various electronic circuits so that the students are able to
	understand the practical aspects of basic electronics theory.

Sr. No.	Learning Outcome	
1.	Experiments are performed using signal Generator, CRO, Regulated	
	DC power supply. Hence after performing Preparatory Experiments, the students will be able to use various instruments	

2.	Will be able to correlate the theoretical concepts of various electronics	
	circuits with practical feasibility; thereby students can learn different	
	electronics circuits and its electrical characteristics in a better way.	
3.	Theoretical knowledge of electronic devices will be justified after	
	performing practical.	

The practical course consists of 10 experiments. After studying the theory and practical student can design and develop Hobby projects.

- The practical course consists of 10 experiments out of which two will be preparatory experiments.
- These will be evaluated in an oral examination for 15% marks at internal and external semester examination.
- Each Practical batch will have maximum 15 students.

Preparatory Experiments (Minimum 2/3)

1. Identification of Components (Passive and Active) /Tools

- Minimum 10 different types of components must be given
- Identification based on visual inspection / data sheets be carried out

2. Use of Digital Multimeter

- Measurement of AC/DC voltage and Current on different ranges
- Measurement of R &C
- Testing of Diodes & Transistors
- Measurement of β .
- Use of Multimeter in measurement of Variation of Resistance of LDR.
- Thermistor

3. Study of Signal Generator & CRO

- Understand how to use Signal Generator, CRO
- Study of front panel controls of both
- Measurement of amplitude and frequency of Sine/Square waveform
- Demonstrate the use of Component testing facility

SEM-I: Electronics Laboratory-I (SBCS113E)

List of Practical (Minimum 08, 4 from each group)

Sr. No.	Title of Experiment		
Group-A			
1	Study of I-V characteristics of Diode.		
2	Study of breakdown characteristics and voltage regulation action of Zener diode.		
3	Study of half wave, full wave and bridge rectifier circuit with and without capacitor filters.		
4	Study of Bipolar Junction Transistor as a Switch.		
5	Study of Single stage RC coupled CE transistor Amplifier (Gain/ Bandwidth).		
6	Study of output and transfer characteristics of JFET.		
7	Study of IC 555 as an Astable Multivibrator.		
	Group-B		
1	Study of Logic Gates (Verification of Truth tables)		
2	Study of Binary to Gray & Gray to Binary Converter (K- Map based design).		
3	Study of Half Adder and Full Adder using Logic Gates.		
4	Use of Ex-OR as a 4-bit Parity Checker and Generator.		
5	Study of Decimal to BCD (Binary) Converter using Gates.		
6	Study of Multiplexer and Demultiplexer (4:1 & 1:4).		
7	Study of BCD to Seven Segment Display using IC 74138 and IC 7447		

Course/ Paper Title	Electronics Laboratory-IB
Course Code	21SBCS123E
Semester	II
No. of Credits	1.5 (46.8 Lectures of 50 minutes each)

SEM-I: Electronics Laboratory-IB (21SBCS123E)

List of Practical (Minimum 08, 4 from each group)

Sr. No.	Title of Experiment		
Group-A			
1	To study temperature sensor LM 35		
2	Use of LDR to control light intensity		
3	Study of PIR and tilt sensor.		
4	Use of OPAMP as comparator and its use in DC motor driving.		
5	Build and test Inverting and non-inverting amplifier using OPAMP.		
6	Build and test adder and Subtractor circuits using OPAMP.		
7	Build and test voltage to frequency converter		
Group-B			
1	Study of RS, JK and D flip flops using NAND gates		
2	Study of Four bit ALU		
3	Study of asynchronous Up/Down Counter		
4	Study of decade counter IC circuit configurations.		
5	Study of 4-bit SISO Shift register and its use as Ring Counter		
6	Study of 4-Bit R-2R Ladder Network type of DAC.		
7	Study of 3-bit Flash ADC		