CBCS: 2021-2022

Computer Science

M. C. E. Society's Abeda Inamdar Senior College of Arts, Science & Commerce, Pune

(An Autonomous College Affiliated to Savitribai Phule Pune University)

Three-Year B.Sc. Degree Program in Computer Science (Faculty of Science and Technology)

Syllabus for S.Y.B.Sc. (Mathematics) Computer Science

Choice Based Credit System Syllabus To be implemented from the Academic Year 2022-2023

<u>Title of the Course: B.Sc. (Computer Science) Mathematics</u> Aims and Objectives of the Course

Sr. No.	Aims
1.	To give the students sufficient knowledge of fundamental principles, methods
	and a clear perception of numerous power of mathematical ideas and tools and
	know-how to use them by modeling, solving, and interpreting.
2.	To reflect the broad nature of the subject and develop
	mathematical tools for continuing further study in various fields
	of science and technology.
3.	To enhance students' overall development and to equip them with
	mathematical modeling abilities, problem-solving skills, creative talent and
	power of communication necessary for various kinds of employment.
4.	To enable students to develop a positive attitude towards mathematics as an
	interesting and valuable subject of study.

Sr.No.	Objectives
1.	A student should be able to recall basic facts about mathematics and should be able to display knowledge of conventions such as notations, terminology and recognize basic geometrical figures and graphical displays and state important facts resulting from their studies.
2.	A student should get a relational understanding of mathematical concepts and concerned structures and should be able to follow the patterns involved and mathematical reasoning
3.	A student should get adequate exposure to global and local concerns that explore many aspects of Mathematical Sciences.
4.	A student must be able to apply their skills and knowledge, that is, translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques to process the information and draw the relevant conclusion.
5.	A student should be made aware of the history of mathematics and hence of its past, present and future role as part of our culture.

Expected Course Specific Learning Outcome

Sr.No.	Outcomes
1.	• Students will know the basic concepts from abstract algebra, especially the notion of a group.
	• Students will have encountered some of the most important examples of groups, as well as developing some far-reaching theory "from the ground up", gaining an insight into powerful ideas and learning techniques that are applicable across a wide range of mathematics and science.
	• Students will develop methods that allow detecting /correcting errors caused when information is transmitted through noisy channels.
2.	• The students will be familiarized with the ways of solving complicated mathematical problems numerically.
	 The students will be able to analyze and solve several errors and approximations in numerical methods. Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of non-linear equations, interpolation, and approximation, numerical differentiation, and integration, solution of linear systems.
3.	 Students will be able to apply algorithms for transformation or generation of points. Students will be able to apply geometric techniques to real-world problems in graphics.
4.	• Students will be ready to formulate a real-world problem as a mathematical programming model and to apply the appropriate method to find an optimal solution.
	• Students will understand the theoretical workings of the simplex/dual-simplex method for linear programming and perform iterations of it by hand.

Structure of S.Y.B.Sc. Mathematics (Computer Science) Course:

	Cour	rses	Continuous Internal	End Semester		
Sr. No.	Semester-III	Semester-IV	Evaluation (CIE) (Internal	Exam (External Marks)	Total Marks	Credits
			Marks)			
1.	21SBCS231M:	21SBCS241M:	20	30	50	2
	Groups and	Computational				
	Coding Theory	Geometry				
2.	21SBCS232M:	21SBCS242M:	20	30	50	2
	Numerical Methods	Operations				
		Research				
3.	21SBCS233M:	21SBCS243M:	20	30	50	2
	Numerical	Mathematics				
	Methods using	Practical based on				
	Scilab	Computational				
		Geometry and				
		Operations				
		Research				

For Continuous Internal Evaluation (CIE):

Evaluation will be done continuously. Internal assessment will be of 20 marks for a paper of 50 Marks. These 20 marks are divided as follows:

- a) There will be a compulsory Test on Demand MCQ Examination of 20 marks of each subject which would be converted into 5 Marks.
- b) Two Class Tests 10 Marks Each. Converted to 5 Marks.
- c) Mid-Sem Exam of 20 Marks converted to 05 Marks
- d) Participation in two activities at department/ college level 05 Marks
- e) In case of students failing to score under category (d), the attendance can be considered to give marks.
- f) There will be a compulsory Mock Practical Examination, Viva Voce of subjects mentioned in for 20 Marks.
- g) The subject teacher needs to adopt anyone out of the following methods for internal assessment:

Written exam	Quiz
Presentations	Projects
Assignments	Tutorials
Oral examination	Open Book Test and Others

Methods of Internal Assessment

Course/ Paper Title	Groups and Coding Theory
Course Code	21SBCS231M
Semester	III
No. of Credits	2

Unit No.	Title with Contents	No. of
		Lectures
Unit I	Integers	06
	1. Division algorithm (without proof)	1
	2. G.C.D. using Division Algorithm and expressing	2
	it as a linear combination, Euclid's lemma	
	3. Equivalence relation (revision)	1
	4. Congruence relation on a set of integers	1
	5. Equivalence class, Partition	1
Unit II	Groups	06
	1. Binary operation	1
	2. Group: Definition and Examples	3
	3. Elementary Properties of Groups	2
Unit III	Finite Groups and Subgroups	12
	1. Order of a Group, Order of an element	2
	2. Subgroup definition, Finite Subgroup Test,	4
	Subgroups of \mathbb{Z}_n , examples	
	3. Generator, Cyclic group, Finding generators of	3
	\mathbb{Z}_n	
	4. Permutation group: Composition of two	
	permutations, representation as a product of	3
	disjoint cycles, inverse and order of a	
	permutation, even/ odd permutation	
Unit IV	Coding Theory	12
	1. Coding of Binary Information and Error	3
	Detection	4
	 Decoding and Error Correction Public Key Cryptography 	5
	5. I uone Key Cryptography	5

Text Books:

- 1. Contemporary Abstract Algebra By J. A, Gallian (7th Edition)
 - Unit I: Chapter 0 Unit II: Chapter 2 Unit III: Chapter 3 Chapter 4 Chapter 5
 - Chapter 7

2. Discrete Mathematical Structures By Bernard Kolman, Robert C. Busby and Sharon Ross (6th Edition) Pearson Education Publication

Unit IV: Chapter 11

References:

1. Book:

1) Basic Abstract Algebra By P.B.Bhattacharya, S.K.Jain, S.R.Nagpaul (2nd Edition), Cambridge University Press

2. Weblinks:

1) https://www.researchgate.net/publication/340062621_LECTURE_NOTE_ON_ABSTRACT_ALG EBRA_I

2) https://nptel.ac.in/courses/111/106/111106113/

Course/ Paper Title	Numerical Methods
Course Code	21SBCS232M
Semester	III
No. of Credits	2

Unit No	Title with Contents	
UIIII NO		
Unit I	Algebraic and Transcendental Equations	4
	1. Errors	1
	2. Algebraic and Transcendental Equations	1
	3. False Position Method/Regula Falsi Method	1
	4. Newton-Raphson's Method	1
Unit II	Calculus of Finite Differences and Interpolation	16
	1. Differences	4
	i. Forward Differences	
	ii. Backward Differences	
	iii. Central Differences	
	iv. Other Differences (δ , μ operators)	
	2. Properties of Operators	1
	3. Relation between Operators	1
	4. Newton's Gregory Formula for forward Difference	
	Interpolation	2
	5. Newton's Gregory Formula for Backward Difference	
	Interpolation	2
	6. Lagrange's Interpolation Formula	2
	7. Divided Difference	2
	8. Newton's Divided Difference Interpolation Formula	2
Unit III	Numerical Integration	08
	1. General Quadrature Formula	2
	2. Trapezoidal Rule	2
	3. Simpson's one-third Rule	2
	4. Simpson's three-eight Rule	2
Unit IV	Numerical Solution of Ordinary Differential Equation	08
	1. Euler's Method	2
	2. Euler's Modified Method	2
	3. Runge-Kutta's Second-order Method	2
	4. Runge-Kutta's Fourth order Method	2

Text Book:

1. A Textbook of Computer Based Numerical and Statistical Techniques, by A. K. Jaiswal and Anju Khandelwal, New Age International Publishers.

Unit I: Chapter 2: Sec. 2.1, 2.5, 2.7

Unit II: Chapter 3: Sec. 3.1, 3.2, 3.4, 3.5

Chapter 4: Sec. 4.1, 4.2, 4.3,

Chapter 5: Sec. 5.1, 5.2, 5.4, 5.5

Unit III: Chapter 6: Sec. 6.1, 6.3, 6.4, 6.5, 6.6, 6.7

Unit IV: Chapter 7: Sec. 7.1, 7.4, 7.5, 7.6

References:

1. Books:

- 1. Introductory Methods of Numerical Analysis, S.S. Sastry, 3rd edition, Prentice Hall of India, 1999.
- 2. Finite differences and Numerical Analysis, H.C. Saxena, S. Chand and Company.
- 3. An Introduction to Numerical Analysis, K.E. Atkinson, Wiley Publications.
- 4. Numerical Analysis, Balguruswamy

2. Weblink:

https://nptel.ac.in/courses/111/106/111106101/

Course/ Paper Title	Numerical Methods using Scilab
Course Code	21SBCS233M
Semester	III
No. of Credits	2

Sr. No	Title of the Practical	No. of Practical
1	Introduction to Scilab	2
	1. Installation of the software Scilab	
	2. Basic syntax	
	3. Mathematical Operators	
	4. Complex numbers	
	5. Polynomials	
2	6. Built-in functions Operations on Matrices	4
-	•	•
	1. Matrix construction	
	2. Algebraic operations on Matrices	
	3. Accessing rows and columns	
	4. Determinant and inverse of a matrix	
	5. Reduced row echelon form, Rank of a matrix	
	6. Solving systems of linear equations	
	7. Eigenvalues and Eigenvectors	
3	User-defined functions	1
	1. 'deff' command	
4	Plotting graphs using Scilab	1
	1. 2-D graph	
	2. 3-D graph	
5	Iterations & conditional statements in Scilab	1
	1. for statement	
	2. while statement	
	3. if statement	
6	Finding roots of an equation using Scilab	1
	1. False Position (Regula Falsi) Method	
	2. Newton-Raphson Method	
7	Numerical Integration using Scilab	1
	1. Trapezoidal Rule	
	2. Simpson's 1/3rd Rule	
	3. Simpson's 3/8th Rule	
8	Numerical Differentiation using Scilab	1
	1. Euler's Method	

Course/ Paper Title	Computational Geometry
Course Code	21SBCS241M
Semester	IV
No. of Credits	2

Unit	Title with Contents	No. of
No.		Lectures
Unit I	Two Dimensional Transformation	12
	1. Introduction	01
	2. Representation of points	01
	3. Transformations and matrices	01
	4. Transformation of straight lines	02
	i. Midpoint Transformation	
	ii. Transformation of parallel lines	
	iii. Transformation of intersecting line	
	5. Rotation, reflection, scaling, shearing	01
	6. Combined transformations/ Concatenation	01
	7. Transformation of a unit square	01
	8. Solid-body transformations	01
	9. Translations and homogeneous coordinates	01
	10. Rotation about an arbitrary point	01
	11. Reflection through an arbitrary line	01
Unit II	Three Dimensional Transformation	08
	1. Three dimensional: Scaling, shearing, rotation,	02
	reflection, translation	
	2. Multiple transformations/Concatenation	02
	3. Rotation:	02
	i. about an axis parallel to coordinate axes	
	ii. about an arbitrary line	
	4. Reflection :	02
	i. through coordinate planes	
	ii. through planes parallel to coordinate planes	
	iii. through an arbitrary plane	
Unit III	Projection	08
	1. Orthographic projections	02
	2. Axonometric projections	02
	3. Oblique projections	02
	4. Single point perspective projection	02
Unit IV	Plane and Space Curves:	08
	1. Introduction	01
	2. Curve representation	01

3. Parametric curves	01
4. Parametric representation of a circle and	03
generation of circle	
5. Bezier Curves:	02
i. Introduction	
ii. properties (without proof)	
iii. Curve fitting (up to $n = 3$)	
iv. Equation of the curve in matrix form	
(up to n = 3)	

Textbook:

1. D. F. Rogers, J. A. Adams, Mathematical Elements for Computer graphics, McGraw Hill Intnl Edition.

Unit I: Chapter 2: Sec. 2.1 to 2.17 Unit II: Chapter 3: Sec. 3.1 to 3.10, Unit III: Chapter 3: Sec. 3.12 to 3.14 Unit IV: Chapter 4: Sec. 4.1, 4.2, 4.5, Chapter 5: Sec. 5.1, 5.8

References:

1. Books:

- 1. Computer Graphics with OpenGL, Donald Hearn, M. Pauline Baker, Warren Carithers, Pearson (4th Edition)
- 2. Computer Graphics, Schaum Series.

2. Weblinks:

- 1. <u>https://www.youtube.com/watch?v=DPcVMEBDpAY</u>
- 2. <u>https://www.youtube.com/watch?v=55JDox30_Fk</u>

Course/ Paper Title	Operations Research
Course Code	21SBCS242M
Semester	IV
No. of Credits	2

Unit No	Title with Contents	No. of
		Lectures
Unit I	Linear Programming Problem I	12
	1. Introduction, Definition and Examples	2
	2. Problem-solving using Graphical method	2
	3. Theory of Linear Programming, Slack and Surplus	4
	variables, Standard form of LPP, Some important	
	definitions, Assumptions in LPP, Limitations of Linear	
	programming, Applications of Linear programming,	
	Advantages of Linear programming Techniques	
	4. Simplex method, Big- M-method	4
Unit II	Linear Programming Problem II	6
	1. Special cases of LPP: Alternative solution, Unbounded	3
	solution, Infeasible solution	
	2. Duality in Linear Programming, Primal to dual	3
	conversion, Examples	
Unit III	Transportation Models	12
	1. Introduction, Tabular representation	3
	2. Methods of IBFS (North-West Corner rule,	4
	Matrix- Minima, Vogel's Approximation),	
	Algorithms	
	3. The Optimality Test of Transportation Model (MODI	5
	method only)	
Unit IV	Assignment Models	6
	1. Introduction	2
	2. The Hungarian method for the Assignment problem	4

Text Book:

1. Operations Research Theory and Applications (2nd Edition), by J.K.Sharma.

Unit I: Chapter 2: Sec. 2.1 to 2.8 Chapter 3: Sec. 3.1, 3.2, 3.3 Chapter 4: Sec.4.1 to 4.4 Unit II: Chapter 4: Sec.4.5, 4.6 Chapter 5: Sec. 5.1, 5.2 Unit III: Chapter 9: Sec. 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7 Unit IV: Chapter 10: 10.1, 10.2, 10.3, 10.4

References:

1. Books:

- 1. Operations Research by H. A. Taha, Pearson Education India
- 2. Operations Research by R. Panneerselvam, Prentice Hall of India
- 3. Principles of Operations Research by H. M. Wagner, Prentice Hall of India
- 4. Operations Research by P.K.Gupta and D.S.Hira, S.Chand Publication

2. Weblink:

https://nptel.ac.in/courses/110/106/110106062/

Course/ Paper Title	Mathematics Practical based on Computational
	Geometry and Operations Research
Course Code	21SBCS243M
Semester	IV
No. of Credits	2

Sr.	Title with Contents	No. of
No		Practical
1	C programming	4
	1. Finding the greatest common divisor and the least common multiple	
	2. Sorting of points with respect to given line and rectangle	
	3. Finding pair of points with nearest/farthest distance from a given set	
	4. Generation of n points on a circle and an ellipse	
2	Written Practical	8
	5. Problems on Unit I from 21SBCS241M	
	6. Problems on Unit II from 21SBCS241M	
	7. Problems on Unit III from 21SBCS241M	
	8. Problems on Unit IV from 21SBCS241M	
	9. Problems on Unit I from 21SBCS242M	
	10. Problems on Unit II from 21SBCS242M	
	11. Problems on Unit III from 21SBCS242M	
	12. Problems on Unit IV from 21SBCS242M	