Abeda Inamdar Senior College of Arts, Science and Commerce, Pune 411001 (Autonomous)

Affiliated to Savitribai Phule Pune University

Syllabus for M. Sc. Part-II (M.Sc. Organic Chemistry)

Choice Based Credit System [CBCS] From Academic Year 2022-23

Board of Studies (Chemistry)

Post Graduate Department of Chemistry and Research Center Abeda Inamdar Senior College of Arts, Science and Commerce, Pune-411001.

Syllabus of Autonomous M. Sc. Part-II Organic Chemistry

Choice Based Credit System [CBCS]

[2022-23]

Structure of the Course:

Basic Frame work of the syllabus for M. Sc. Part-II Organic Chemistry at the Abeda Inamdar Senior College of Arts, Science and Commerce, (Autonomous), Pune affiliated to Savitribai Phule Pune University.

Sr. No.	Paper No.	Subject	Credit
	·	SEMEMSTER-III	
1	21SMOC231	Organic Reaction Mechanism, Free Radical and	4
		Heterocyclic Chemistry	
2	21SMOC232	Application of Spectroscopy to Structural Analysis	4
3	21SMOC233	Organic Stereochemistry, Pericyclic and Photochemistry reactions	4
		(Any One from Following 21SMOC234)	
4	21SMOC234A	Protection-Deprotection and Carbohydrate Chemistry	2
4	21SMOC234B	Bio-Organic Chemistry	2
5	21SMOC235	Practical: Ternary Mixture Separation	2
6	21SMOC236	Practical: Solvent Free Synthesis	2
7	21SMOC237	Practical: Double Stage Preparations	2
	·	SEMESTER-IV	
8	21SMOC241	Retrosynthesis, Total Synthesis and Biogenesis of Natural	4
		Products	
9	21SMOC242	Advanced Organic Synthesis	4
10	21SMOC243	Medicinal Chemistry	4
		(Any One from Following 21SMOC244)	
11	21SMOC244A	Asymmetric Synthesis	
11	21SMOC244B	Supramolecular reaction	2
12	21SMOC245	Practical: Convergent and Divergent Synthesis	2
13	21SMOC246	Practical: Carbohydrate synthesis and Isolation of Natural	2
		Compounds	
		(Any One from Following 21SMOC247)	
14	21SMOC247A	Project / Industrial Training	2
14	21SMOC247B	Practical: PTC, Microwave assisted Organic Synthesis and	2
		Instrumental Techniques	

***N.B.:** 1. One Credit Theory Paper = 15 Hours lectures per semester and 1 Hour per week.

2. Two Credit Practical Paper = 60 Hours practical per semester and 4 hours per week.

M. Sc. II Organic Chemistry Programme Objectives and Outcomes

Programme Objectives:

- 1. To develop conscience towards social responsibility, human values and sustainable development through curriculum delivery and extra-curricular activities.
- 2. To develop scientific temperament with strong fundamental knowledge of the subject.
- 3. To develop analytical thinking and problem-solving skills needed for various entrance and competitive examinations and Post Graduate Studies.
- 4. To train students in laboratory skills and handling equipment along with soft skills needed for placement.
- 5. To mold a generation of youth this can apply the chemistry in their life and careers.
- 6. To inculcate scientific attitude enriched with a multidisciplinary perspective in the students.
- 7. To update the students with the needs of the industry and society with respect to chemistry.

Programme Outcomes: After completing the M. Sc. Programme, the students shall:

- 1. Know the basics and applied aspects of the chemistry.
- 2. Be in a position to apply their knowledge in their professional, social and personal life.
- 3. Be competent to pursue research or a career in the chemistry.
- 4. Have the knowledge and confidence to pursue higher studies in Chemistry.
- 5. Have skills in laboratory techniques and experience in instrument handling.
- 6. Develop sensitivity towards social issues and become productive citizens of the nation.

Programme Specific Outcome:

M.Sc. Organic Chemistry:

- 1. Should gain knowledge in basic organic chemistry, re-arrangements, modern synthetic reagents, coupling reaction, multicomponent synthesis and click chemistry reactions.
- 2. Students should be able to gain knowledge in classical organic laboratory techniques and the uses of modern instrumentation to perform new experiments.
- 3. Should be able to understand Advanced Spectroscopic Techniques, Stereochemistry, Organic Synthesis and basics of Computer Aided Drug Designing as well.

- 4. Should acquire the ability to synthesize, separate and characterize compounds using laboratory and instrumentation techniques.
- 5. Should be able to integrate the knowledge learned in Organic Chemistry to various industrial and pharmaceutical needs.
- 6. Learn about the potential uses of retro-synthetic analysis, medicinal chemistry, natural products chemistry and green chemistry.
- 7. Should be able to shoulder responsibilities in R & D labs.
- 8. To interpret the data obtained from various spectral techniques, through theoretical principals.
- 9. Able to apply knowledge of organic chemistry in research problems.
- 10. Should know about global level research opportunities to pursue Ph.D. programmes, targeted approach of CSIR NET and other competitive examinations.
- 11. Should know enormous job opportunities at all levels of chemical, pharmaceutical, food products, life-oriented material industries.

Evaluation Pattern:

For each Theory and Practical Course, 50-50 pattern will be followed. Internal assessment will be of 50 marks for a paper of 100 Marks. Internal assessment will be of 25 marks for a paper of 50 Marks.

For Continuous Internal Evaluation (CIE), evaluation of theory courses will be done continuously. The 50 marks of Internal Evaluation shall be divided into the following:

- a) One Mid Semester Exams of 15 Marks each.
- b) Two Class Tests of 15 marks each converted to 15 Marks.
- c) One Presentation/Seminar/MCQ Test of 5 Marks.
- d) One Group Discussion/Open Book Test of 5 or 10 Marks.
- e) Class Assignments of 10 or 5 Marks.
- f) A compulsory Mock Practical Examination and Viva Voce of practical subjects.
- g) Internal marks for Journal / project report/ dissertation report completion and certification.

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

M. Sc. Part-II Organic Chemistry

SEMESER-III

Course/ Paper Title	Organic Reaction Mechanism, Free Radical and
	Heterocyclic Chemistry
Course Code	21SMOC231
Semester	III
No. of Credits	4 Credits, (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives
	Student should understand and learn;
1.	The student is expected to learn the basic theory of organic reaction mechanism.
2.	The course has been designed such that it will be helpful in understanding the qualitative and quantitative impacts of the substituents on reaction mechanism.
3.	Through this course, student is expected to thoroughly learn basic as well as advanced concepts and various reactions of carbanion, free radicals with their applications in organic syntheses.
4.	The course will give a fundamental theoretical understanding of heterocyclic chemistry, including alternative general methods for ring synthesis and application of such methods for the preparation of specific groups of heterocyclic systems.

Sr. No.	Learning Outcome
	Student should be able to;
1.	To inculcate mechanistic approach for advanced organic reactions.
2.	Students will be able to correctly identify the electronic effects of various important substituents during course of the reaction.

3.	Theoretical understanding of heterocyclic chemistry which includes various methods	
	for ring synthesis and application of those methods for the preparation of specific	
	groups of heterocyclic systems.	
4.	Students will be able to draw mechanisms for reactions involving heterocycles as	
	starting materials, intermediates and products, and be able to propose syntheses of	
	heterocycles from the major classes.	

Unit	Title with Contents	No. of
No.		Lectures
Ι	Hammett equation and its applications. Linear free energy	06
	relationship	
	Hammett plots, Hammett equation, substituent constants, reaction	
	constants, use of Hammett plots, calculation of k and K, Deviations	
	from straight line plots, Taft equation, solvent effects.	
II	Methods for determining Reaction Mechanisms (Kinetic and non-	04
	kinetic methods)	
III	Alkylation of Nucleophilic Carbon Intermediates (Carbanions)	06
	Generation of carbanion, kinetic and thermodynamic enolate	
	formation, Regioselectivity in enolate formation, alkylation of	
	enolates, Generation and alkylation of dianion, medium effects in the	
	alkylation of enolates, oxygen versus carbon as the site of alkylation,	
	Alkylation of aldehydes, ketones, esters, amides and nitriles, Nitrogen	
	analogs of enols and enolates- Enamines and Imines anions, alkylation	
	of enamines and imines. Alkylation of carbon nucleophiles by	
	conjugate addition (Michael reaction)	
IV	Reaction of carbon nucleophiles with carbonyl groups	08
	Mechanism of Acid and base catalyzed Aldol condensation, Mixed	
	Aldol condensation with aromatic aldehydes, Regiochemistry in mixed	
	reactions of aliphatic aldehydes and ketones, intramolecular Aldol	

Section-I: Organic Reaction Mechanism [24 L + 6 T]

reaction and Robinson annulation, Addition reactions with amines and	
iminium ions; Mannich reaction, Amine catalysed condensation	
reaction: Knoevenagel reaction. Acylation of carbanions, Reactions of	
Phosphorous, Nitrogen and Sulphur Ylids.	

References Books:

- 1. Mechanism and structure in Organic Chemistry E. S. Gould (Holt, Rinehart and Winston)
- 2. Advanced organic chemistry by J. March, 6th Ed.
- 3. Advanced organic chemistry. F. A. Carey and R. J. Sundberg, 5th Ed. Springer (2007)
- 4. A guidebook to mechanism in organic chemistry Peter Sykes 6th Ed. Orient Longman
- 5. Organic Chemistry J. Clayden, N. Greeves, S. Warren and P. Wothers. Oxford University Press (2001)

Unit	Title with Contents	No. of
No.		Lectures
Ι	Free Radicals	08
	Generation, stability, reactivity, Free radical substitution, addition to	
	multiple bonds, radicals in synthesis, Inter- and intra-molecular bond	
	formation via mercury hydride, tin hydride, thiol donors, cleavage of C-	
	X, C-Sn, C-S, O-O bonds, Oxidative coupling, C-C bond formation in	
	aromatics, SNAr reactions, Free Radicals in Organic Synthesis.	
II	Heterocyclic Chemistry	16
	Synthesis and reactions of Five and Six Membered Hetero Cyclic	
	Compounds- Containing One, Two and Three Hetero atoms, Synthesis	
	and Reactions of Fused Ring Heterocyclic Compounds- Indole, Benzo	
	Furan, BenzoThiophene, Quinoline and Isoquinoline.	

Reference Books:

- Advanced Organic Chemistry, Part A F. A. Carey and R. J. Sundberg, 5th Ed. Springer (2007)
- 2. Radical in Organic Synthesis- B. Giese, Pergamon Press (1986)
- 3. Mechanism and structure in Organic Chemistry E. S. Gould (Holt, Rinehart and Winston)
- 4. Advanced Organic Chemistry –J. March, 4th edition
- Advanced Organic Chemistry- Part A: Structure and Mechanism- F. A. Carey and R. J. Sundberg, 5th Edition, Springer 2007)
- 6. A guidebook to mechanism in Organic Chemistry- Peter Sykes
- 7. Classics in total synthesis- K. C. Nicolaou and E. J. Sorensen; VHC (1996)
- 8. P. A. Wender and J. J. Howbert J. Am. Chem. Soc. 103, 688-690 (1981)
- 9. Organic Chemistry J. Clayden, N. Greeves, S. Warren and P. Wothers
- Heterocyclic Chemistry -T. Gilchrist 15. An introduction to the chemistry of heterocyclic compounds-R M Acheso
- 11. Heterocyclic Chemistry- J A Joule and K Mills
- 12. Principles of modern heterocyclic chemistry- A Paquette

- **13.** Heterocyclic Chemistry- J A Joule and Smith
- 14. Handbook of Heterocyclic Chemistry- A R Katritzky, A F Pozharskii
- 15. Heterocyclic Chemistry-II- R R Gupta, M Kumar, V Gupta, Springer (India) pvt

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Application of Spectroscopy to Structural Analysis
Course Code	21SMOC232
Semester	III
No. of Credits	4 Credits (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Aims and Objectives	
	Student should understand and learn;	
1.	The basic concept of NMR spectroscopy	
2.	To apply the different aspects of NMR spectroscopy to predict the structure of	
	Compounds.	
3.	To analyze the Mass spectroscopy.	
4.	To correlate the different Heteronuclear Coupling.	
5.	To evaluate the invaluable tools in synthetic chemistry for the confirmation of	
	known molecules and elucidation of structures of unknown compounds of high	
	complexity with a high degree of certainty.	

Sr. No.	Learning Outcome
	Students should be able to;
1.	Recognize the basic concept Understand the valuable concepts in NMR spectroscopy.
2.	Discuss the basic knowledge about Mass spectroscopy.
3.	Experiment the different aspects of NMR spectroscopy to predict the structure of

	compounds.	
4.	Predict the structure of unknown molecules by using the spectral data and to	
	identify the structure of the molecules.	

Section-I: NMR of Proton, Carbon and other Hetero nuclei [24 L + 6 T]

Unit	Title with Contents	No. of
No.		Lectures
Ι	Nuclear Magnetic Resonance Spectroscopy	14
	Concepts of NMR, NMR Internal interaction parameters- External and	
	Internal interactions in NMR, Chemical Shifts, NMR Spectrum and chemical	
	equivalence, Conversion of frequency and ppm, Field dependence and	
	factors affecting chemical shift and Coupling constant. Coupled spin systems	
	and multiplicity patterns of coupled spins -Coupling among non-equivalent	
	spins, Geminal and Vicinal couplings, Spin system Nomenclature, Isotope	
	effect, Analysis of Strongly coupled spin systems, Analysis of Three four	
	and five nuclei (first order spectra), Roofing effect etc. Stereochemistry,	
	hindered rotation, Karplus curve-variation of coupling constant with dihedral	
	angle spin coupled systems, Simplification of complex Spectra - Nuclear	
	magnetic double resonance, solvent effects. Fourier transform technique,	
	Nuclear Overhauser effect (NOE).	
II	¹³ C-NMR Spectra -General considerations, chemical shift (aliphatic, olefin,	10
	alkyne, aromatic, hetero aromatic and carbonyl carbon), Coupled and	
	Decoupled ¹³ C-Spectra, Broadband decoupling in ¹³ C-NMR, Analysis of ¹³ C	
	spectra, DEPT and APT technique.	
	Heteronuclear couplings and satellite analysis, Analysis of spectra of other	
	nuclei, like ¹⁹ F, ¹⁵ N, and ³¹ P.	

Unit	Title with Contents	No. of
No.		Lectures
Ι	Mass Spectrometry	06
	Instrumentation, various methods of ionization (field ionization, field	
	desorption, SIMS, FAB, MALDI), different detectors (magnetic	
	analyzer, ion cyclotron analyzer, Quadrupole mass filter, time of flight	
	(TOF), factors affecting fragmentation, ion analysis, ion abundance.	
	Mass spectral fragmentation of organic compounds, common functional	
	groups, molecular ion peak, metastable peak, Mc-Lafferty	
	rearrangement. Nitrogen rule High resolution mass spectrometry.	
II	Two-dimensional (2D) Spectroscopy	06
	2D NMR Techniques, General idea about two-dimensional NMR	
	spectroscopy, 2D NMR (1H-1H, 13C- 1H COSY/ HETCOR, HMBC),	
	experiments and their applications.	
III	Structure elucidation based on spectroscopic data (IR, UV, NMR,	12
	Mass and 2D)	

Section-II: Mass and Two-Dimensional Spectroscopy [24 L + 6 T]

Reference Books:

- 1. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric identification of organic compounds, 7th edition, John Wiley, 2005.
- 2. Organic Spectroscopy, W. Kemp, 3rd edition, Macmillan, 2011.
- **3**. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw Hill, 6th edition 2007.
- **4**. P. S. Kalsi, Spectroscopy of Organic Compounds, 6th edition, New age international, 2004.
- Introduction to Spectroscopy D. L. Pavia, G.M. Lampman, G. S. Kriz, 3rd Ed. (Harcourt college publishers).
- 6. Nuclear Magnetic Resonance Basic Principles- Atta-Ur-Rehman, Springer- Verlag (1986).

- 7. One and Two dimensional NMR Spectroscopy- Atta-Ur-Rehman, Elsevier (1989).
- 8. Organic structure Analysis- Phillip Crews, Rodriguez, Jaspars, Oxford University Press (1998).
- 9. Organic structural spectroscopy- Joseph B. Lambert, Shurvell, Lightner, Cooks, Prentice-Hall (1998).
- Organic structures from spectra- Field L. D., Kalman J.R. and Sternhell S. 4th Ed. John Wiley and sons Ltd.
- 11. NMR spectroscopy of Organic compounds. Jackmann and Sternhell S (1998)
- Organic spectroscopy-RT Morrison and RN Boyd 15. Practical NMR spectroscopy-ML Martin, J J Delpench, and D J Martyin
- 13. Spectroscopy in organic chemistry- C N R Rao and J R Ferraro
- 14. NMR –Basic principle and application-H Guntur
- **15**. Interpretation of NMR spectra-Roy H Bible
- 16. Mass spectrometry organic chemical applications, J H Banyon

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Organic Stereochemistry, Pericyclic and Photochemistry reactions
Course Code	21SMOC233
Semester	III
No. of Credits	4 Credits, (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives	
	Student should understand and learn;	
1.	To learn and apply various concepts such as stereochemistry and fundamental	
	principles of stereoselectivity in organic chemistry.	
2.	To enable a comprehensive knowledge on conformational analysis and	
	stereochemistry, concerted reactions and pericyclic reactions of organic	
	compounds to the students.	
3.	To learn conformation and reactivity of cycloalkanes, fused and brighed ring	
	compounds, models use for diastereoselectivity	
4.	To explain the stereochemical aspects of organic compounds and	
	stereochemical reactions with stereochemistry.	
5.	To develop interest and understanding of the theoretical basis for Pericyclic	
	reactions and skills for the utilization of these reactions in the organic	
	synthesis.	
6.	To learn and understand various types of pericyclic reaction, approaches in	
	pericyclic reaction and mechanisms	

Expected Course Specific Learning Outcomes

Sr. No.	Learning Outcome	
	Student should be able to;	
1.	Evaluate the stability of various conformers of acyclic and cyclic systems using steric, electronic and stereoelectronic effects and correlate them to reactivity. Use various models for determining stereoselectivity of various organic transformations	
2.	Able to Predict the stereochemistry & mechanism reactions.	
3.	Able to predict the stereochemistry & products of the Pericyclic reactions	
4.	Able to predict the correct Models for diastereoselective reaction	
5.	Predict whether the pericyclic reaction will proceed under thermal or photochemical conditions	

Syllabus

Section-I: Organic Stereochemistry [24 L + 6 T]

Unit	Title with Contents	No. of
No.		Lectures
Ι	Stereochemistry of six membered rings:	07
	Conformations of polysubstituted cyclohexane, physical properties of	
	substituted cyclohexanes, 2-alkyl and 3-alkyl ketone effect,	
	conformations, reactivity and stereochemical principles involved in	
	reactions of six membered rings; stereochemistry of addition,	
	elimination, reduction, iodo-lactonization, epoxidations in six membered	
	rings.; Conformational effects in six membered heterocyclic rings-	
	Anomeric effect, Double anomeric effects; Study of conformers with	
	boat and twist boat form- Cis and trans -1,3-di-t-butyl-cyclohexanes,	
	1,4-di-t-butyl-cyclohexanes,1-Cis-4-di-t-butyl-cis-2,5-	
	dihydroxycyclohexane, Cis-2-methyl-5-tert-butyl-1,3-dioxane.	
II	Stereochemistry of rings other than six membered rings:	04
	Shapes and stability of three, four, five, seven and eight membered	

	rings. Conformational effects in Medium sized rings, transannular effect,	
	Concept of I- strain, reactions in other than six membered rings	
III	Stereochemistry of fused and bridged ring systems:	06
	Introduction of ring systems: Nomenclature, synthesis; Stereochemistry	
	of bicyclic compounds, Fused bicyclic compounds; Stereochemical	
	aspects of Decalin, 9-metyl decalin, Perhydrophenanthrene,	
	Perhydroanthracene, hydrindane, Steroids, twistane; Bridged system (bi,	
	tri and polycyclo system) including heteroatoms; Bredt's Rule and	
	applications with examples; reaction in bridged and fused rings;	
	stereoselective reactions in fused and bridged rings.	
IV	Diastereoselectivity: Cram's Model, Felkin Anh Model, dipolar model	04
	and Cram's rigid model; Houk models, Cieplak and cation coordination	
	models.	
V	Racemic modification: Methods of preparation and Resolution of	03
	modification; Stereochemistry of a polymer chain – Types and examples	
	of Tacticity.	

Reference Books:

- 1. Stereochemistry of carbon compounds E. L. Eliel
- 2. Stereochemistry of carbon compounds E. L. Eliel and S. H. Wilen
- 3. Stereochemistry of organic compounds Nasipuri
- 4. Stereochemistry of organic compounds Kalsi
- 5. Modern Organic Synthesis An Introduction by George S. Zweifel, Michael H. Nantz
- 6. Principles and Applications of Stereochemistry- Michael North
- 7. Chemistry of Plant Natural Products-Stereochemistry, Conformation, Synthesis, Biology, and Medicine by Sunil Kumar Talapatra Bani Talapatra (Springer)

Unit	Title with Contents	No. of
No.		Lectures
Ι	Pericyclic reactions:	14
	i) Introduction -Characteristics and classification of pericyclic reactions.	
	ii) Molecular orbitals –Bonding and symmetry properties.	
	iii) Woodward Hoffmann rules, Orbital analysis, Orbital Correlation	
	Diagram, FMO approaches, PMO, Möbius-Hückel ATS concept and	
	Stereochemistry of Electrocyclic reactions, Cycloaddition reactions.	
	iv) Electrocyclic reaction: Torquoselectivity, Examples of electrocyclic	
	reactions, Nazarov reaction	
	iv) Cycloaddition Reactions: study of Diels-Alder reaction - orientation,	
	Stereochemistry, Cis rule, Alder's Endo rule and Regioselectivity; 1,3-	
	Dipolar cycloaddition, ketene addition, other examples	
	v) Sigmatropic rearrangements: Stereochemistry, FMO and PMO	
	approach, H and C sigmatropic migration, [1,3], [1,5], [1,7], [3,3]	
	sigmatropic rearrangements- Cope, Oxy-Cope, Aza-Cope, Claisen, and Aza-	
	Claisen rearrangements.	
	vi) Chelotropic reactions (Additions and Eliminations), Group transfer,	
	Group elimination and Ene reactions.	
	vii) Examples based on pericyclic reactions with other reactions.	
II	 Photochemistry: Quantum yield, electronic states and transitions, modes of dissipation of energy (Jablonski diagram), electronic energy transfer. Photosensitization and quenching process, Quantum yield. Photochemistry of carbonyl compounds: Norrish-I and Norrish-II 	10
	cleavages, Photoenolisation, Photoreduction, Paterno-Buchi reaction.	
	Photochemistry of enones, photochemical rearrangements of α , β -	
	unsaturated ketones and cyclohexadienones. Photo Fries rearrangement.	
	Photochemistry of olefins: cis-trans isomerizations, dimerizations and Di-	
	π - methane rearrangements.	
	Photochemistry of Benzene and Substituted Benzene, Barton reaction.	

Section-II: Pericyclic and Photochemistry reactions [24 L + 6 T]

Reference Books:

- 1. The Conservation of Orbital Symmetry by R.B. Woodward and R. Hoffman.
- Pericyclic Reactions A Textbook: Reactions, Applications and Theory by S. Sankararaman, Roald Hoffmann
- 3. Orbital Symmetry: A problem solving approach- R. E. Lehr and A. P. Marchand
- **4.** Pericyclic Reactions by A Mechanistic and Problem-Solving Approach by Sunil Kumar Vinod Kumar S.P. Singh
- 5. Pericyclic Reactions- S. Sankararaman, A text Book, Wiley VCH, 2005
- Organic Chemistry- Clayden, Greeves, Warren and Wothers, Oxford University press, 2001.
- 7. Organic chemistry by Jonathan Clayden (2nd edition)
- 8. Photochemistry and Pericyclic reactions by Jagdamba Singh and Jaya singh.
- 9. Pericyclic Reactions by S.M. Mukherji.
- **10.** Chem. Commun., 2007, 2211–2221 (10.1039/b700054p)
- 11. K.I. Ramachandran, G. Deepa, K. Namboori, Computational Chemistry and Molecular Modeling: Principles and Applications, Springer, 2008
- 12. F. Jensen. Introduction to Computational Chemistry (Second Edition, Wiley), 2007
- 13. Advanced Organic Chemistry, Part A by F. A. Carey and R. J. Sundberg
- 14. Excited states in Organic Chemistry by J.A. Barltrop and J.D.Coyle
- 15. Organic photochemistry: A visual approach by Jan Kopecky

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Protection-Deprotection and Carbohydrate Chemistry
Course Code	21SMOC234A
Semester	Ш
No. of Credits	2 Credits (24 L, 06T)

Aims & Objectives of the Course

Sr. No.	Objectives
	Student should understand and learn;
1.	Concept of Protection and de-protection groups and its application in organic synthesis
2.	Concept of chiral templates and use of chiral canters for synthesis natural molecules
3.	Basic interconversion of sugar molecules in different forms
4.	Donor and Acceptor concept in glycosylation
5.	Arming, and disarming groups concept and effect of protective group in glycosylation reaction
6.	Various Glycosyl donors and their activation

Sr. No.	Learning Outcome		
	Student should be able to;		
1.	Know and apply the protective groups during organic synthesis that include Protection and deprotection mechanism.		
2.	Identify different forms sugar molecules		
3.	Understand the formation of Gycosidic bonds using Donor and Acceptor in glycosylation		

4.	Understand	the	Arming,	and	disarming	groups	and	their	role	in
	glycosylation	n read	ction							
5.	Identify diffe	erent	Glycosyl	donor	s and their a	ctivation.				

Syllabus for Protection-Deprotection and Carbohydrate Chemistry [24 L + 6 T]

Unit	Title with Contents	No. of
No.		Lectures
Ι	Protection and de-protection of functional group in organic synthesis:	07
	Hydroxyl group- alkyl ether, benzyl ether, acyl, PMB, Trityl, TMS,	
	TBDMS, THP, MOM, MEM, MIP ether; Diol - Acetone, Cyclohexanone;	
	Amines- Benzyl, Acyl, CBZ, BOC, FMOC,	
	Carboxyl group-Ester, DCCI, DIPCDI;	
	Ketone and aldehydes- Glycol, Thioglycol, Ketal, Acetal;	
	Orthoesters as protecting groups, Protection de-protection approach - In	
	Solid phase synthesis of polypeptide; polynucleotide, cyclitols, and amino-	
	sugars.	
П	Basics of Carbohydrates: Introduction of sugars, structures of monosaccharides, triose, tetrose, pentose, hexose, D/L forms of aldoses and ketoses in Fisher projections, cyclic hemiacetal forms of monosaccharides, representation of monosaccharide structure (Fisher, Zig-zag, Mills, Haworth projection and Chair conformation), The structure of Glucose, the anomeric configuration, mutarotation (D-Glucose), Conformations of monosaccharides, the anomeric effect. Modified monosaccharides,	04
	Alditols, Cyclitols, Nomenclature of monosaccharides, Cyclic forms of the α and β -D-aldoses.	
Ш	Glycosyl donor and acceptor concept, their role in glycosylation Effect of protecting groups on glycosylation stereoselectivity and coupling efficiency, Arming, and disarming groups concept. General methods and stereochemical aspect of glycosyl bond formation	07

IV	Synthesis of glycosyl donor such as; Halides, Trichloroacetimides, Glycals	06
	and Glycal derivatives, Thioglycosides, Phosphites, n-Pentyl glycosides,	
	Sulfoxides Diazarines and their glycosylation reaction, Alkylation of	
	reducing sugars. Mannosides, Synthesis of 2-Deoxy Sugars, Orthogonal	
	strategy in Oligosaccharide synthesis. Intramolecular glycosylation	

Reference Books: -

- 1. Greene's protective groups in organic synthesis –Wuts and Green 4th Edn. Wiley-India
- 2. Organic Chemistry J. Clayden, N. Greeves, S. Warren and P. Wothers (Oxford Press)
- 3. Modern organic synthesis-An introduction- George S. Zweifel, Michael H. Nantz.
- 4. Advanced Organic chemistry, Part B F. A Carey and R. J. Sundberg, 5th edition (2007)
- 5. Chiron Approach in organic synthesis S. Hanessianh
- 6. Organic Chemistry R. P. Morrison and R. N. Boyd
- 7. Organic Chemistry I. L. Finar, volume II.

8. Essentials of Carbohydrate Chemistry and Biology: T. K. Lindhorst, WILEY-VCH, 2000, Chapter 3.

9. Monosaccharide's: Their Chemistry and their Roles in Natural Products: Peter M. Collins, Robert J. Ferrier: John Wiley & Sons, 1995.

10. Carbohydrate in Chemistry and Biology: Part 1 Chemistry of Saccharides Vol.1. WILEY-VCH, 2000.

11. The Organic Chemistry of Sugars; By: Daniel E. Levy Peter Fugedi, Publication: Taylor & Francis, Published on 2006

12. Handbook of Chemical Glycosylation by Alexei V. Demchenko, Wiley VCH, 2008

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Bio-Organic Chemistry
Course Code	21SMOC234B
Semester	III
No. of Credits	2 Credits, (24 L, 06T)

Aims & Objectives of the Course

Sr. No.	Objectives		
	Student should understand and learn;		
1.	The students should be able to understand bioorganic molecules		
 The students should be able to learn; structure and reactivity of biological molecules such as peptides, carbohydrates, lipids and nucleic acids 			
3.	Basic mechanism of biomolecules		

Sr. No.	Learning Outcome
	Student should be able to;
1.	Classify bio-organic molecules.
2.	The students should be able to comprehend; structure and reactivity of
	biological molecules
3.	The students should be able to understand basic action of biomolecules.

Unit	Title with Contents	No. of
No.		Lectures
Ι	Introduction to Bio-organic Chemistry: Overview of Bio-organic	04
	Chemistry- Historical Connection Between Organic and Biological	
	Chemistry; Weak Interactions in Organic and Biological World;	
	Proximity Effect in Organic Chemistry; Molecular Recognition;	
	Chemistry of the Living Cells; Analogy Between Biochemical and	
	Organic Reaction.	
II	Bioorganic Chemistry of Amino Acids: Introduction-Overview of	06
	Chemical Biology; Amino Acids and their Asymmetric Synthesis;	
	Chemistry of Peptide Bonds; Peptide Secondary Structures and Tools	
	for Stabilization; Natural α -amino Acids and β -peptides; β -Turn	
	Peptidomimetics; β-lactam based peptidomimetics	
III	Bioorganic Chemistry of Enzymes: Introduction to Enzyme Catalysis	06
	and Kinetics; The Catalytic Triad; Enzyme Inhibition and Drug design;	
	Enzyme in Organic Chemistry; Antibody Catalysed Organic Reaction;	
	Enzyme Models: Biomimetic Polyene Cyclisation; Squalene	
	Biosynthesis.	
IV	Bio-organic Chemistry of Nucleic Acids: History, Sugars and bases;	06
	Conformation of sugar-phosphate backbone; hydrogen bonding by	
	bases; the double helix; A, B, and Z double helices; Stability of Double	
	Helix; DNA intercalators; Chemical synthesis of DNA; Catalytic RNA,	
	siRNA.	

Reference Books:

1. Hermann Dugas: Bioorganic Chemistry-A chemicalApproach to Enzyme Action; 3rd Edition.

2. The organic chemistry of enzyme-catalyzed reactions, by Richard B.Silverman, Academic Press, San Diego, 2000, 717 pp.

3. Amino acids, peptides and proteins, by J.S. Davies, Royal Society of Chemistry, UK, Vol.35, 2006.

- 4. Biochemistry, 5th Ed. by Lubert Stryer, Jeremy M.Berg, and John L. Tymoczko.
- 5. Page, M. I. In The Chemistry of β -Lactams; Page, M. I.Ed.; Chapman Hall 1992, p. 79.

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Practical: Ternary Mixture Separation
Course Code	21SMOC235
Semester	III
No. of Credits	2 Credits, (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives				
	Student should understand and learn;				
1.	The application of theoretical principles and experimental				
2.	To understand analysis of ternary mixtures of organic compound b using Ether separation method.				
3.	To identify the type of compound with different nature				
4.	Learn about Element present in the given compound and how to confirm functional groups				

Sr. No.	Learning Outcome			
	Student should be able to;			
1.	Separate ternary mixture and can analyze each component of the mixture.			
2.	They can use this knowledge to identify the unknown compound.			

Unit	Title with Contents	Practical
No.		Sessions
I	Separation of minimum 06 mixtures containing three components	12
	with analysis. The mixtures should also involve separation of nitro	
	phenols, amino acids, low boiling and water soluble and insoluble	
	compounds solids and liquids with multifunctional groups. The	
	mixture separation should be carried out on micro-scale using ether	
	or water.	
	The students should be able to	
	1. Understand and employ concept of type determination, separation	
	2. Meticulously record physical constants	
	3. Perform micro scale chemical elemental analysis	
	4. Perform qualitative estimation of functional groups	
	5. Recrystallize /distill the separated compounds	
	6. Extend these skills to organic synthesis	

Syllabus for CHO-235: Practical: Ternary Mixture Separation [48 L + 12 T]

Reference Books:

1. Comprehensive Practical Organic Chemistry Qualitative Analysis by V.K. Ahluwalia, S. Dhingra.

2. Qualitative Organic Analysis By B. Haynes

3. Comprehensive Organic Chemistry Experiments for the Laboratory Classroom. (2020). United

Kingdom: Royal Society of Chemistry.

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Practical: Solvent Free Synthesis
Course Code	21SMOC236
Semester	III
No. of Credits	2 Credits, (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives		
	Student should understand and learn;		
1.	To synthesize different reactions without Solvent.		
2.	To learn the formation of C-C, C-N, C-X and N-N Bonds		
3.	To apply how to evaluate a reaction or process and determine "Solvent Free" alternatives.		
4.	To focus on the routes to improve industrial processes and to produce important products.		
5.	To evaluate the synthetic pathway to produce pharmacological compounds.		

Sr. No.	Learning Outcome	
	Student should be able to;	
1.	Designed of chemical products and processes that reduce or eliminate the use and generation of hazardous substances.	
2.	Created awareness for reducing waste, minimizing energy consumption in	

	organic synthesis.	
3.	Understand the various synthetic pathways and implement it in the production of	
	pharmacological compounds.	
4.	Evaluate the concept of microwaves and ionic liquids in various chemical	
	reactions	

Syllabus for Practical: Solvent Free Synthesis and Phase transfer synthesis [48 L + 12 T]

Unit	Title with Contents	Practical
No.		Sessions
Ι	Solvent Free Synthesis - Any Total 12 practical to be conducted	12
	from following;	
	The students should perform any 12 Syntheses from the following	
	list. Students should acquire pre-experiment (Reading MSDS,	
	purification of reactants and reagents, mechanism, stoichiometry etc)	
	and post-experiment skills (work-up, isolation and purification of	
	products, physical constants characterization using any spectroscopic	
	methods etc.)	
	A) Solvent Free Carbon–Carbon Bond Formation	
	1. Pinacol coupling reaction (Page 36)	
	2. Reformatsky reaction/Luche reaction (Page 36)	
	3. Knoevenagel condensation (Page 40)	
	4. Dieckmann condensation (Page 42)	
	5. 6. 7. 3-(ethoxycarbonyl)-4-hydroxy-5-(1-hydroxyalkyl)-2-	
	isoxazoline-2-oxide (Page 46)	
	6. Biginelli reaction (Page 46)	
	9. Claisen reaction (Page 47)	
	10. Pechmann reaction (Page 50)	
	B) Solvent-Free C–N Bond Formation	
	1. Azomethine synthesis (Page 213)	
	2. Diazepinone synthesis (Page 218)	

3. dibenzyl sulfone Synthesis (Page 297)
C) Solvent-Free C–X Bond Formation
1. Cinnamic acid/ stilbene halogenations (Page 319)
2. Phenol bromination using, N-bromosuccinimide (Page 320)
D) Solvent-Free N–N Bond Formation
1. Triazenes Synthesis (Page 335)
2. Beckmann rearrangement (Page 346)
E) Spectral analysis of any one of the above synthesized compound

Reference Books:

1. Solvent-free Organic Synthesis by Koichi Tanaka (Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, ISBN: 978-3-527-32264-)

2. Comprehensive Practical Organic Chemistry by V.K. Ahluwalia and Renu Agarwal.

3. Monograph on Green Chemistry Laboratory Experiments by Green Chemistry Task Force Committee, DST

4. Additional Study Material: <u>https://nptel.ac.in/courses/104/106/104106108/</u>

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Practical: Double Stage Preparations
Course Code	21SMOC237
Semester	III
No. of Credits	2 Credits, (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives		
	Student should understand and learn;		
1.	The course aims is not only the continuation study of basic principles of organic chemistry, but it will also provide the important topics in Organic chemistry functional groups including (aromatic compounds, phenols, carboxylic acids and its derivatives, aldehydes & ketones, amines, and malonic ester synthesis).		
2.	This helps students to gain experience to predict the functional group transformations, simple reaction mechanisms, and the synthesis of organic molecules by multi-step synthesis strategies.		
3.	In addition of that, the course will also help students to understand the reaction mechanism subjects in later stages of their study.		

Sr. No.	Learning Outcome		
	Student should be able to;		
1.	Acquire skills to observe and record scientific experiments.		
2.	Students able to familiarize their self with the laboratory equipments,		

various chemicals, and set up chemical reactions to ensure safe and
diligent laboratory practice.

Syllabus for Practical: Double Stage Preparations [48 L + 12 T]

Unit	Title with Contents	Practical
No.		Sessions
Ι	Double stages preparation (Any Six Experiments)	12
	At least six two stage heterocyclic preparations from the following	
	should be carried out. The preparations should be carried out on micro	
	scale	
	1. Benzaldehyde Benzalacetophenone Epoxide	
	2. 4-Nitro toluene 4-nitro benzoic acid 4-Amino benzoic	
	acid	
	3. Resorcinol 4-methyl-7-hydroxy coumarin 4-Methyl-7-	
	acetoxy coumarin	
	4. Cyclohexanone Phenyl hydrazine 1, 2, 3, 4-	
	tetrahydrocarbazole	
	5. Hydroquinone Hydroquinone diacetate 1, 2, 4-	
	Triacetoxy benzene	
	6. Acetanilide p-Acetamidobenzene sulphonyl chloride p-	
	acetamidobenzene sulphonamide	
	7. Cyclohexanol from cyclohexanone (LAH reduction)	
	8. p-Cresol p-Cresyl benzoate 2-Hydroxy-5-methyl	
	benzophenone	
	9. Phthalimide N-benzylphthalimide Benzylamine	
	10. Grignard Reaction	
	11. Phthalic acid Phthalimide Anthranilic acid	
	12. Benzyl cyanide p-Nitrobenzyl cyanide p-Nitro phenyl	
	acetic acid	
	13. Hydroquinone Hydroquinone diacetate 2, 5-dihydroxy	

acetopheneone	
14. Benzoin Desylbenzoate 2, 4, 5-triphenyl Oxazole	
15. Phenylacetate O-Hydroxyacetophenone Chromone -	
2-carboxylic acid	
16. Benzaldehyde Hippuric acid Azalactone	
17. Spectral analysis of any one of the above synthesized compound	

Reference Books:

- 1. Practical Organic Chemistry A. I. Vogel (Longmans).
- 2. Text Book of practical organic Chemistry F. G. Mann & B.C. Sanders.

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

SEMESTER-IV

Course/ Paper Title	Retrosynthesis, Total Synthesis and Biogenesis of Natural
	Products
Course Code	21SMOC241
Semester	IV
No. of Credits	4 Credits (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives
	Student should understand and learn;
1.	Conceptualize retrosynthesis of one or more than one functional group with
	respect to disconnection approach.
2.	Independently design synthetic routes for the target molecules and understand
	synthetic strategies used by renowned research groups.
3.	Solve problems based on retrosynthetic perspectives.
4.	Identify the role and use of various reagents in asymmetric synthesis,
	stereochemistry of some important naturally occurring molecules and evaluate
	correct structure and stereochemistry.
5.	Understand the role of main building blocks in biosynthesis of natural products
	along with the basic construction mechanisms.
6.	Develop understanding of mechanistic details in the biosynthetic routes covered
	in the syllabus.

Sr. No.	Learning Outcome
	Student should be able to;

1.	Understand conversion of one functional group to another and also functional
	group additions to enable viable disconnections
2.	Apply a range of standard functional group interconversions and to change the
	position of a functional group.
3.	Use disconnections to design effective organic synthesis of molecules using a
	range of known reaction types.
4.	To make big molecules from small molecules with specific stereochemistry
5.	Logical problem-solving approach.
6.	Synthetic methods to design new synthetic strategies.
7.	Retrosynthesis and synthesis of natural products.
8.	Explain the broad features of the sequences and able to predict how and why
	intermediates get transformed during the biosynthesis of natural products.

Section-I: Retrosynthesis and Total Synthesis [24 L + 6 T]

Unit No.	Title with Contents	No. of
		Lectures
Ι	Concepts of Retrosynthesis	10
	Retrosynthetic analysis, disconnection approach, Synthons, multiple	
	step synthesis, functional group interconversion, Illogical two group	
	interconversion, C-C disconnection, Donor and acceptor Synthons, two	
	group disconnection, 1,5 related functional group disconnection,	
	Umpolung, convergent synthesis, special methods for small rings,	
	Heteroatom and Heterocyclic compounds, problems	
II	Application of Retrosynthetic Approach	04
	Retrosynthesis and synthesis of following Molecules: Juvabione,	
	Longifolene (by E.J. Corey and Co-worker), Subincanadine E.	
III	Total Synthesis and stereochemistry determination of Pinnaic acid	10

Reference Books:

1. Designing Organic Syntheses by Stuart Warren

- Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, by Vitomir Sunjic, Springer; 1st ed. 2016 edition
- 3. Classics in Total Synthesis by K.C. Nicolaou and E.J. Sorensen
- **4.** Angew. Chem. Int. Ed. 2001, 40 (23), 4450-4452.
- 5. Angew. Chem. Int. Ed. 2001, 40, (23), 4453-4456.
- 6. Angew. Chem. Int. Ed. 2007, 46, 5746–5749
- 7. J. Org. Chem. 2017, 82, 11126-11133
- 8. Advanced Organic Chemistry Carey, Sundberg; Part B

Unit No.	Title with Contents	No. of
		Lectures
Ι	Terpenoids – Mono, Sesqui, Di and Triterpenoids and cholesterol	12
П	Alkaloids derived from ornithine, lysine, nicotinic acid, tyrosine and tryptophan.	06
III	The shikimate pathway – cinnamic acids, lignans and lignin, coumarins, flavonoids stilbenes and isoflavonoids	06

Section-II: Biogenesis of Natural Products [24 L + 6 T]

Reference Books:

- Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery by Christopher T Walsh, Yi Tang
- From Biosynthesis to Total Synthesis: Strategies and Tactics for Natural Products- Editor Alexandros L. Zografo
- 3. Medicinal Natural Products: A Biosynthetic Approach, 3rd Edition By Paul M. Dewick

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Advanced Organic Synthesis
Course Code	21SMOC242
Semester	IV
No. of Credits	4 Credits (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives
	Student should understand and learn;
1.	To learn how to design a new route for synthesis of various reactions.
2.	To familiarize students with different organometallic complex.
3.	Know about the role of various reagents in synthetic methods.

Sr. No.	Learning Outcome	
	Students should be able to;	
1.	Understand how to design a new route for synthesis of various reactions.	
2.	Can know the role of different reagents in organic synthesis.	
3.	Can learn about the Organo Metallic, Metathesis, Multi Component, Ring Formation Reactions, and Click Chemistry.	

Unit	Title with Contents	No. of
No.		Lectures
Ι	Metals complexes in organic synthesis:	14
	Introduction- oxidation states of transition metals, 16-18 rule,	
	dissociation, association, insertion, oxidative addition, reductive	
	elimination of transition metal.	
	OrganoPalladium in organic synthesis- Heck arylation, allylic	
	activation, carbonylation, wacker oxidation, Stille, Sonogashira,	
	Fukuyama, Kumada, Hiyama, Negeshi, Tsuji Trost, Buchwald-Hartwig	
	and Suzuki coupling reactions and their importance.	
	Organonickel- coupling, carbonylation, Oligomerisation and Reppe	
	reaction.	
	OrganoIron - Noyori annulation, Collmann's reagent, and Eletrophilic	
	reactions.	
	OrganoCobalt – Oxo Process, Pausand Khand reaction, Volhardt's co-	
	trimerisation reaction.	
	OrganoRuthenium and organoRhodium reagents	
II	Use of Boron and Si in organic synthesis	10
	OrganoBoron, OrganoSilicon reagents in organic synthesis.	

Section-I: Organo Metallic Chemistry [24 L + 6 T]

Section-II: Metathesis, Multi Component And Other Reactions [24 L + 6 T]

Unit	Title with Contents	No. of
No.		Lectures
Ι	C=C formation reactions: Wittig, Horner-Wordworth-Emmons,	06
	Shapiro, Bamford Stevens, McMurry, Julia-Lythgoe and Peterson	
	olefination reactions.	
II	Metathesis of NHC's – Synthesis and reactivity, Grubbs catalysts,	06
	Olefin metathesis by I^{st} and II^{nd} generation catalyst, reaction mechanism	
	and application in the synthesis of homo and heterocyclic compounds	

III	Multi-component reactions: Ugi, Passerini, Biginelli and Mannich	04
	reactions	
IV	Ring formation reactions: Pausan-Khand, Bergman and Nazerov	04
	cyclization, Click chemistry reaction	
V	Other important reactions: Baylis Hilman, Eschenmoser-Tanabe	04
	fragmentation, Mitsunobu reaction.	

- G. S. Zweifel and M. H. Nantz, Modern Organic Synthesis-An Introduction, W. H.Freeman and Company, 2006.
- Francis A. Carey and Richard J. Sundberg, "Advanced Organic Chemistry Part B: Reactions and Synthesis", 5th Edition, Springer, 2007.
- **3.** "Organic Chemistry" Clayden, Greeves, Warren and Wothers, Oxford University press, 2001
- 4. E. J. Corey and X. M. Cheng, the Logics of Chemical Synthesis, Wiley, 1989.
- J. H. Fuhrhop, G. Li, Organic Synthesis: Concepts and Methods, 3rd edition, VCH, 1994.
- 6. W. Carruthers, Some Methods of Organic Synthesis, Cambridge University Press.
- 7. H. O. House, Modern Synthetic Reactions, Benjamin-Cummings Publishing Co. 1972
- 8. "Organic Synthesis state of the art 2003-2005". Douglas Taber.

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Medicinal Chemistry
Course Code	21SMOC243
Semester	IV
No. of Credits	4 Credits (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives	
	Student should understand and learn;	
1.	The basic ideas of drug development and discovery.	
2.	To educate students on many areas of novel drug development and discovery	
3.	Drug interaction with biological target	

Sr. No.	Learning Outcome	
Student should be able to;		
1.	Do Drug screening, target identification	
2.	lead discovery, optimization	
3.	The molecular basis of drug design and drug action.	

Section-I -	[24 L +	6 T]
-------------	---------	------

Unit	Title with Contents	No. of
No.		Lectures
Ι	Introduction to Peptides and proteins, Proteins as biological catalyst Nucleic	08
	acids, Metabolism, Chemistry of cofactors/coenzymes, Chemistry of TPP,	
	PLP, Folic Acid and other vitamins, Principle of drug design, Chemistry of	
	diseases and Drug development, Proton pump inhibitors and Problem	
	solving.	
II	Peptides, sequencing and applications in therapeutics, Solution phase and	06
	solid phase peptide synthesis and Modern techniques for biomolecules and	
	disease diagnosis.	
III	Introduction to Medicinal Chemistry - History, drug targets, Drug	04
	discovery, design and development, Case Study: Design of Oxamniquine.	
IV	Pharmacokinetics and Pharmacodynamics of drug: Drug absorption,	06
	distribution, metabolism, elimination and toxicity, drug metabolism,	
	biotransformation, Drug receptor interactions, Hansch Equation and	
	significance of terms involved in it.	

Section-II- [24 L + 6 T]

Unit	Title with Contents	No. of
No.		Lectures
I	Structure and activity Relationship: QSAR, Applications of SAR and QSAR in drug design, physio-chemical parameters lipophilicity, partition coefficient, electronic ionization constant, Case Study: Statins.	10
II	Introduction, Developments, SAR, Mode of action, limitations and adverse effect of Anti-infective Agents, Beta lactam antibacterial agents (Penicillins, Cephalosporins), Tetracyclins, Macrolides, Chloramphenicol, Polyenes, Amphotrecin-B, Azoles, Amantadine, Acyclovir, Quinine, Quinolines, Quinolones, Refamycine, Sulphonamides.	14

1. Biochemistry, 5th Ed.(Hardcover) by Lubert Stryer, Jeremy M.Berg, and John L. Tymoczko.

2. Amino acids, peptides and proteins, by J.S. Davies, Royal Society of Chemistry, UK, Vol. 35, 2006.

3. Medicinal Chemistry and Drug Discovery by Burger.

4. Introduction to Medicinal Chemistry by Grham and Patrick.

5. Introduction to Drug Design by J. R. Dimmock and S.S. Pandeya.

6. The Organic Chemistry of Drug Design and Drug Action, 3rd Edition, R. B. Silverman, Academic Press, 2014.

7. Wilson and Gisvold's Text Book of Organic Medicinal and Pharmaceutical EPChemistry, Ed Robert F Dorge, 12th Edition, 2010.

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Asymmetric Synthesis	
	(Elective/Option Paper)	
Course Code	21SMOC244A	
Semester	IV	
No. of Credits	2 Credits (24 L, 06T)	

Aims & Objectives of the Course

Sr. No.	Objectives	
	Student should understand and learn;	
1.	Student should understand and learn the concept of Asymmetric synthesis	
2.	Discover reactions that will reliably provide optically pure compounds.	
3.	Develop effective strategies for using chiral auxiliaries, catalysts, and the substrate	
	to control stereochemical relationships.	
4.	Be able to give a detailed account of the course and mechanism of illustrative	
	examples of the following asymmetric reactions that utilize chiral auxiliaries:	
	enolate alkylation (oxazolidinones, oxazolines and chiral hydrazones), asymmetric	
	(Evans) Aldol reaction and cycloaddition.	
5.	Be able to suggest the correct type of catalyst used for asymmetric reactions, the	
	mechanism and applications of these reactions	

Sr. No.	Learning Outcome	
Student should be able to;		
1.	1. Describe the asymmetric synthesis using the chiral auxiliary	
	component.	

2.	Explain industrial applications and importance of asymmetric
	reactions
3.	Able to understand enolate reaction in asymmetric synthesis
4.	Understand various aspects and definitions of asymmetric synthesis

Syllabus for CHO-244A:	Asymmetric	Synthesis [24 L + 6 T	Ί

Unit	Title with Contents	No. of
No.		Lectures
Ι	1. Introduction of Asymmetric Synthesis: Classification of Asymmetric	24
	reactions, Optical purity, ee and de, calculation of % ee and optical purity,	
	Stereoselective Synthesis, Categories and Strategies in Asymmetric	
	Synthesis: Chiral substrate controlled, Chiral auxiliary controlled, Chiral	
	reagent controlled, Chiral catalyst controlled Asymmetric Synthesis.	
	2. Chiral pool and Chiral auxiliaries: chiral pool strategies in asymmetric	
	synthesis, Chiral auxiliary- Evan's chiral Auxiliary, RAMP, SAMP,	
	synthesis and Uses of Chiral Auxiliaries in asymmetric synthesis.	
	3. Aldol reactions and related reactions- Diastereoselective Aldol reaction,	
	Aldol reaction of chiral enolate & achiral aldehydes, achiral enolate &	
	chiral aldehydes, Heathcock aldol reaction, Double diastereoselective	
	Aldol reaction, Chiral auxiliary-controlled Asymmetric Aldol reactions,	
	Mukaiyama aldol reactions, Proline - catalyzed asymmetric Aldol	
	reactions.	
	4. Asymmetric Hydrogenation and Reduction- catalytic hydrogenation	
	using Rh, Ru metals, Use of Use of chiral BINOL, BINAP, Noyori	
	asymmetric hydrogenation, CBS reduction.	
	5. Asymmetric Epoxidation- Sharpless Epoxidation, Jacobsen Epoxidation,	
	Shi epoxidation,	
	6. Asymmetric dihydroxylation – phthalazine-based ligands DHQ and	
	DHQD in hydroxylation, Aminohydroxylation	
	7. Asymmetric Organocatalysis- Enantioselective Organocatalysis	

Involving Iminium, Enamine. Proline and Macmillan Imidazolidinone
catalyzed reactions, Organocascade Catalysis. asymmetric organocatalytic
epoxidation.

- **1.** ORGANIC CHEMISTRY by Jonathan Clayden (1st edition)
- 2. ORGANIC CHEMISTRY by Jonathan Clayden (2nd edition)
- 3. Modern Methods of Organic Synthesis by W. Carruthers
- 4. Advanced Organic Chemistry by Carey and Sundberg, Fifth Edition
- Principles and Applications of Asymmetric Synthesis by Lin, Li, Chan. (2001 by John Wiley & Sons)
- Catalytic Asymmetric Synthesis, by I. Ojima, John Wiley & Sons, New Jersey, 2010, 3rd Ed.
- 7. Catalysis in Asymmetric Synthesis by Vittorio Caprio and Jonathan M. J. Williams
- 8. Asymmetric synthesis by Garry Procter, Oxford Science
- 9. Asymmetric Synthesis by R.A. Aitken and S.N. Kilenyi
- 10. Modern Methods in Stereoselective Aldol Reactions by Rainer Mahrwald, Wiley-VCH
- 11. Selectivity in Organic Synthesis. Ward, R. S. (1999). United Kingdom: Wiley.
- 12. Angew. Chem. Int. Edn. 2008, 47, 4638–4660.
- 13. Stereochemistry of Organic compounds by Ernest L. Eliel, SAMUEL H. Willey (Ch.12)
- 14. Asymmetric Synthesis by Garry Procter

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Supramolecular reaction
	(Elective/Option Paper)
Course Code	21SMOC244B
Semester	IV
No. of Credits	2 Credits (24 L, 06T)

Aims & Objectives of the Course

Sr. No.	Objectives		
	Student should understand and learn;		
1.	The concept of Covalent Organic Frameworks; It's Synthesis and		
	Applications		
2.	Idea of Organic Electroluminescent Materials		
3.	The concept of Supramolecular Organic Compounds		

Sr. No.	Learning Outcome
	Student should be able to;
1.	Understand chemistry of Covalent Organic Frameworks
2.	Comprehend function of Organic Electroluminescent Materials.
3.	Comprehend Host-Guest molecules their types and their applications

Syllabus for Supramolecular reaction	[24 L + 6 T]
--------------------------------------	--------------

Unit	Title with Contents	No. of
No.		Lectures
Ι	Covalent Organic Frameworks: Structures, Synthesis,- Ionothermal	08
	Synthesis, Microwave Synthesis, Mechanochemical Synthesis, Room-	
	Temperature Synthesis and Applications - (Heterogeneous Catalytic	
	Application of COFs Heterogeneous Catalysts of COFs for C-C Bond	
	Coupling Reactions; Suzuki-Miyaura Reaction, Heck, Sonogashira, and	
	Silane-Based Cross-Coupling Reactions, Chiral Heterogeneous Catalysts	
	of COFs for Asymmetric C-C Bond Coupling Reactions, Heterogeneous	
	Bimetallic or Bifunctional Catalysts of COFs.	
II	Organic Electroluminescent Materials: Introduction to	06
	Electroluminescent (EL), Molecular organic electroluminescent materials,	
	Charge injection and transport, Quantum efficiency, Reliability, OLED	
	displays.	
III	Supramolecular Organic Compounds: Overview of Supramolecular	10
	Chemistry, The Chemistry of Molecular Recognition – Host Molecules and	
	Guest Molecules, (Crown Ethers, Cyclodextrin, Calixarene, etc),	
	Supramolecular Topology (Carbon Nanotubes; Dendrimers, Rotaxanes)	

1. Review article by Maria S. Lohse and Thomas Bein Adv. Funct. Mater. 2018, 28(33), 1705553.

2. Review article by L.S. Hunga and C. H. Chen Materials Science and Engineering 2002, R 39,

143-222

3. Review by Matthew C. T. Fyfe and J. Fraser Stoddart Accounts of Chemical Research 1997, 30 (10), 393-401

4. Review article by Wei Chen and et al. Chem. Soc. Rev., 2015, 44, 2998-3022.

5. The Chemistry of Metal–Organic Frameworks- Wiley Online. Print ISBN: 9783527338740,

Online ISBN:9783527693078, DOI:10.1002/9783527693078

6. Covalent Organic Frameworks - 1st Edition - Atsushi Nagai, ISBN 9789814800877,Published January 24, 2020 by Jenny Stanford Publishing.

7. Introduction to Supramolecular Chemistry- Kluwer Academic Publishers, Helena Dodziuk; Print ISBN: 1-4020-0214-9.

8. Supramolecular Chemistry-Fundamentals and Applications, Springer Publications, Katsuhiko Ariga ISBN-10 3-540-01298-2

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Practical: Convergent and Divergent Synthesis	
	Practical	
Course Code	21SMOC245	
Semester	IV	
No. of Credits	2 Credits (48 L, 12T)	

Aims & Objectives of the Course

Sr. No.	Objectives
	Student should understand and learn;
1.	The course provides the important topics in Organic chemistry functional groups
2.	To predict the functional group transformations, simple reaction mechanisms, and the synthesis of organic molecules by multi-step synthesis strategies.
3.	In addition of that, the course will also help students to understand the TLC and physical parameter of compound.

Sr. No.	Learning Outcome
	Student should be able to;
1.	Acquire skills to observe and record scientific experiments.
2.	Students able to familiarize their self with the laboratory equipments, various chemicals, and set up chemical reactions to ensure safe and diligent laboratory practice.

Syllabus for Practical: Convergent and Divergent Synthesis Practicals [48 L + 12 T]

Unit	Title with Contents
No.	
Ι	Any two set from following
	SET-I
	A) Convergent Synthesis 1 (Three Stage Synthesis)
	1. Stage I: Anisole to 4-nitro anisole to 4-amino anisole (2 steps)
	2. Stage II: Toluene to 4-nitro toluene to 3-acyl nitro toluene (2 steps)
	3. Stage III: Synthesis of N-(1-(2-methyl-5-nitrophenyl) ethyl) aniline from 4-amino
	anisole, 3-acyl nitro toluene and SBH (One pot synthesis: MCR)
	B) Divergent Synthesis 1 (3 Single Stage Synthesis from Acetyl acetone):
	1. Acetyl acetone to Pyrimidine
	2. Acetyl acetone to 2,4-dimethyl-1H-benzo[b][1,4]diazepine
	3. Acetyl acetone to Pyrazole
	4. Acetyl acetone with 1mmol benzaldehyde to 3-benzylidenepentane-2,4-dione
	5. Acetyl acetone with 3 mmol benzaldehyde into 3-benzylidene-6-phenylhex-5-ene-
	2,4-dione
	SET-II
	A) Convergent Synthesis 2(Three Stage Synthesis)
	1. Stage I: 4-Nitro toluene to 4-amino toluene (Reduction by using Sn/HCl)
	2. Stage II: Phenol into 2-hydroxy benzaldehyde (Reimer-Tiemann reaction)
	3. Stage III: Synthesis of amidoalkyl-2-naphthols from β -Naphthol,4-amino toluene
	and of 2-hydroxy benzaldehyde (One pot synthesis: MCR)
	B) Divergent Synthesis (3 Single Stage Synthesis from β-Naphthol)
	1. β-Naphthol to Synthetic dye (By diazonium coupling)
	2. β-Naphthol to 6-Bromo-2-naphthol (Bromination reaction)
	3. β -Naphthol to β -Naphthyl methyl ether (Methylation reaction)
	4. β -Naphthol to temperature dependent sulfonation (Sulfonation reaction)
	5. β -Naphthol to (β) Binol then Resolution of Binol (Resolution technique)

S	ET-III
Α) Convergent Synthesis-3 (Three Stage Synthesis)
1.	. Stage I: Salicylic acid to 5-Chloro-2-hydroxybenzoic acid
2.	. Stage II: o- Anisidine to 2-methoxy-4-nitroaniline
3.	. Stage III: Synthesis of 5-chloro-2-hydroxy-N-(2-methoxy-4-nitrophenyl)
be	enzamide from 5-Chloro-2-hydroxybenzoic acid, -methoxy-4-nitroaniline (One pot
sy	ynthesis: MCR)
B	3) Divergent Synthesis-3 (3 Single Stage Synthesis from Salicylaldehyde)
1.	. Salicylaldehyde to Salicylaldehyde phenylhydrazone
2.	. Salicylaldehyde with melanonitrile to 2-iminochromene by intramolecular
су	yclization.
3.	. Salicylaldehyde to 2-hydroxy-3, 5-dinitrobenzaldehyde
S	ET-IV
A) Convergent Synthesis- 4 (Three Stage Synthesis)
1.	. Stage I: Benzene to actophenone (F.C acylation)
2.	. Stage II: 4-Nitrochlorobenzene into 4-amino chlorobenzene (Reduction by using
hy	ydrazine)
3.	. Stage III: Quinoline synthesis by using acetophenone, 4-amino chloro benzene and
st	tyrene (One pot synthesis: $[3 + 2 + 1]$ cycloaddition reaction)
B	B) Divergent Synthesis-4 (5 Single Stage Synthesis from Acetophenone)
1.	. Acetophenone to Ethyl benzene by Wolf Kishner reduction
2.	. Acetophenone to m-Nitro acetophenone by nitration
3.	. Acetophenone to Chalcone using aromatic aldehyde
4.	. Acetophenone into Schiff base using aromatic amine
5.	. Acetophenone to Benzoic acid and Iodoform

- 1. Practical physical chemistry, A. Findlay, T. A. Kitchner (Longmans, Green and Co.).
- Experiments in Physical Chemistry, J.M. Wilson, K. J. Newcombe, A. R. Denko. R. M. W. Richett.
- 3. Senior Practical Physical Chemistry, B.D. Khosla and V. S. Garg (R. Chand and Co.,Delhi.).

- 4. Experimental Physical Chemistry, R C Das and B. Behera, Tata McGraw Hill, 1983.
- Advanced Experimental Chemistry, Vol. I Physical by Gurtu & R. Kapoor, S Chand & Co.
- **6.** Systematic Experimental Physical Chemistry by S. W. Rajbhoj and T K Chondhekar, Anjali Publication.

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Practical: Carbohydrate synthesis and Isolation of
	Natural Compounds
Course Code	21SMOC246
Semester	IV
No. of Credits	2 Credits (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives	
	Student should understand and learn;	
1.	During practical course students should able to synthesize different	
	building blocks using various protecting group.	
2.	Should learn the methods of isolation of natural compounds by using	
	various techniques.	

Sr. No.	Learning Outcome	
	Student should be able to;	
1.	To perform Isolation of pigments from different Flowers	
2.	To perform Isolation of essential oils from natural sources	
3.	To perform Isolation of medicinally important component from the natural products	

Syllabus for Practical: Carbohydrate synthesis and Isolation of Natural Compounds [48 L + 12 T]

Unit	Title with Contents	Practical
No.		Sessions
Ι	(Total 12 practical to be conducted)	12
	Carbohydrate Synthesis	
	1) Synthesis and structural determination of α - and β -D-glucose	
	penta- acetate.	
	2) Selective deacylation of α - and β -D-glucose penta-acetate.	
	3) Benzoylation of D-glucose.to D-glucose penta-benzoate.	
	4) Selective debenzoylation of D-glucose penta-benzoate	
	5) Synthesis 1, 2, 5,6-di-O-isopropylene-D-glucofuranose.	
Π	6) Synthesis of 1,2: 5,6 – di-O-isopropylene-3-O-benzyl –D-	
	glucofuranose.	
	Unit II: Isolation of pigments from the natural products	
	1. Orange Marigold	
	2. Rose	
	3. Sunflower	
	4. Hibiscus	
	5. Any coloured flowers/fruits available in the local area (only one	
	is allowed).	
III	Note: Students should be able to collect reasonable quantities of	
	colour pigments to do the characterization (Physical Constant,	
	Elemental analysis functional group test etc) and should also form	
	the appropriate derivative. They are encouraged to use these	
	pigments for developing food grade natural colours from lesser	
	known plant sources.	
	Unit III: Isolation of essential oils from the natural products	
	1. Ginger	

	2. Lemongrass
IV	3. Garlic
	4. Ajwain /ajowan / Trachyspermum ammi
	5. Vekhand (achourus calamus) root
	6. Any natural products available in the local area (only one is
	allowed)
	Note: Students should be able to collect a reasonable quantities of
\mathbf{V}	essential oils to do the characterization(Physical Constant, Density,
	Elemental analysis functional group test) Should form the
	appropriate derivative. They are encouraged to use these essential
	oils for the development of the products like soap, perfumes etc.
	Unit IV: Isolation of medicinally important component from
	the natural products
	1. Nimbin from Neem leave
	2. Amyrin from Apati/Apta bark
	3. Eujenol from Tulsi leaves
	4. D-Galacturonic Acid from Jeshtamadh
	5. Piper from Betel leaf
	6. Any medicinally important plants available in the local area
	Unit V. Spectral analysis of any one of the above synthesized/
	isolated compounds

1. Essentials of Carbohydrate and Chemistry and Biology: Thisbe K. Lindhorst, WILEY-VCH, 2000.

- 2. Kawanata, K. P. R. Tretrahedron Lett. 1986, 27, 3415.
- 3. Bessodes, M., Shamszar, J. Antonakies, K., Synthesis, 1988, 560.
- 4. Vogel's Textbook of Organic Chemistry Practicals.

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Project/ industrial Training
Course Code	21SMOC247A
Semester	IV
No. of Credits	2 Credits (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives
	Student should understand and learn;
1.	Students should carry out a small research project separately.
2.	This should make them familiar with i. Literature survey, research methodologies ii. Data Analysis iii. Column and TLC chromatographic techniques iv. Characterization of the products by analytical and spectral methods.

Sr. No.	Learning Outcome	
	Student should be able to;	
1.	Understand the various synthetic pathways and implement it in the production of pharmacological compounds.	
2.	Students will be able to interpret spectral data and other observations.	

Unit No.	Title with Contents	
Ι	Project report must be written and submitted in a proper format as follows;	
	i. Certificate (Signed by Project guide and Head of the Department)	
	ii. Certificates for Poster/Paper presented in conferences (if any)	
	iii. Self-declaration certificate for plagiarism	
	iv. Introduction (not more than 6 pages)	
	v. Results and Discussions	
	vi. Experimental Section	
	vii. Conclusion	
	viii. References (Use ACS format)	
	ix. Spectroscopic or other relevant supporting data	
	x. Acknowledgement	
	1. Interdisciplinary projects shall be encouraged; however, there must be some	
	chemistry component.	
	2. Students should spend enough time for the project works (more than 4 hours	
	per week for 15 weeks)	
	3. At least 30% students should undertake projects/summer training/Internships	
	etc.	
	4. If student is performing project in another institute, for such a student, internal	
	mentor must be allotted and he will be responsible for internal assessment of a	
	student. In this case student has to obtain certificate from both external and	
	internal mentor.	
	5. Systematic record of attendance of project students must be maintained by	
	a mentor.	
	6. Project will be evaluated jointly by examiners and there will not be any	
	practical performance during the examination. Typically, student has to present his	
	practical work and discuss results and conclusions in details (15-20 min.) which	
	will be followed by question-answer session (10 min). It is open type of examination.	

Details for Project [48 L + 12 T]

M. C. E. Society's Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Course/ Paper Title	Practical: PTC/Microwave assisted Organic
	Synthesis and Instrumental Techniques
Course Code	21SMOC247B
Semester	IV
No. of Credits	2 Credits (48 L, 12T)

Aims & Objectives of the Course

Sr. No.	Objectives			
Student should understand and learn;				
1.	Maximize atom economy			
2.	Use safer solvents and reaction conditions			
3.	Analyze in real time to prevent pollution			
4.	Introduction to modern Analytical Instrumentation techniques and their applications			
5.	Use safer solvents and reaction conditions			

Sr. No.	Learning Outcome		
Student should be able to;			
1.	Understand advantages of Microwave assisted synthesis		
2.	Importance of Phase Transfer Catalysis		
3.	Use catalysts, not stoichiometric reagents.		
4.	Use renewable feedstock		
5.	Understand how to operate and importance of different modern		

Syllabus for Practical: PTC/Microwave assisted Organic Synthesis and Instrumental Techniques [48 L + 12 T]

Unit	Title with Contents	Practical
No.		Sessions
Ι	The organic synthesis using PTC of certain "Phase-Transfer Agents" (the	12
	PT catalysts) to facilitate the transport of one reagent from one phase into	
	another (immiscible) phase wherein the other reagent exists.	
	1. TBAB-catalyzed synthesis of 2,4,5-triaryl imidazoles	
	2.TBAB-catalyzed synthesis of 1,3-dihydrobenzimidazol-2-ones under	
	microwave-assisted	
	3. TBAB-catalyzed synthesis of 1,5-benzodiazepine derivatives in	
	ethanol.	
	4. TBAB-catalyzed synthesis of aryl-14H-dibenzo[a,j]xanthenes under	
	solvent-free	
	5. TBAB-catalyzed synthesis of 1,3-thiazine-4-yl-3,4-dihydropyrimidine-	
	2(1H)-on	
	6.Tetrabutylammonium Hydrogen Sulfate Catalyzed Synthesis Of 3,4-	
	Dihydropyrimidin-2(1H)-Ones Under Solvent-Free Conditions	
	7. TBAHS catalyzed Michael addition in water	
II	Instrumental Techniques:	
	The laboratory course is designed to complement the Principles of	
	Analytical Instrumentation. This course will provide a practical	
	introduction and experience in the use of modern analytical	
	instrumentation. Students will face a number of real-world challenges and	
	learn how to apply instrumental approaches to overcome them. Emphasis	
	will be placed on sample preparation, instrumental operation/methods,	
	and data interpretation for a range of pharmaceutical, biological,	
	environmental, and industrial samples by using HPLC, Gas	
	Chromatography, IR, UV Spectrophotometer, Microwave synthesizer.	

- 1. Microwave-Assisted Organic Synthesis: A Green Chemical Approach. (2014). United States: Apple Academic Press.
- 2. Microwave Assisted Organic Synthesis. (2009). Germany: Wiley.
- **3.** Ahmad Shaabani, Ayoob Bazgir & Sakineh Arab-Ameri (2004) Tetrabutylammonium hydrogen sulfate: an efficient catalyst for the synthesis of 3,4-dihydropyrimidin-2(1h)-ones under solvent-free conditions, Phosphorus, Sulfur, aJnd Silicon and the Related Elements, 179:11, 2169-2175, DOI: 10.1080/10426500490474815
- 4. Molecules 2020, 25, 5918; doi:10.3390/molecules25245918
- 5. J. Chem. Sci., Vol. 121, No. 1, January 2009, pp. 65–73

Dr. Khursheed Ahmed Chairman, BoS Chemistry and Head, Department of Chemistry.