MSc Microbiology

M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Two Year Degree Program in Microbiology (Faculty of Science &Technology)

Syllabus for

M.Sc. (Microbiology)

Part-I

Choice Based Credit System Syllabus

To be implemented from Academic Year 2021-2022

Title of the Course: M.Sc. (Microbiology) Preamble:

The main theme of teaching microbiology course is the application of basic principles of life sciences to develop into technology. Modern biology combines the principles of chemistry and biological sciences (molecular and cellular biology, genetics and immunology) with technological disciplines (engineering, computer science) to produce goods and services and for environmental management. Tools of molecular biology play an important role in preparation of an engineered clone, a recombinant or a genetically manipulated organism (GMO). The objective of the Master's Programme in Microbiology is to equip the students with updated knowledge of prokaryotic and eukaryotic cellular processes, microbial taxonomy, biostatistics, molecular biophysics, molecular biology and biochemistry.

The Board of Studies in Microbiology has identified the following thrust areas and prospective plans for syllabi reforms at postgraduate level:

- **Microbial diversity**: Facets of microbial diversity which includes morphological, structural, metabolic, ecological, behavioral and evolutionary aspects
- Microbial diversity in extreme environments: Properties and application of extremophiles and also includes collecting information of diversity, exploration and utilization of diversity to identify and harvest biomolecules for human health improvisation, micro-organisms from extreme environments, Archaebacteria, etc.
- Mathematical approach for Biologists: Numerical Microbiology Problem solving, Concept of mathematical models, Application of Mathematical models to microbiological processes
- Advanced Biochemistry and Molecular Biology Techniques: Chromatography techniques, next generation sequencing methods (Pyrosequencing, Ion torrent, Nanopore sequencing)
- **Research Methodology**: Use of search engines for scientific data mining, use of reference management tools, statistical data analysis using software

To enrich students' knowledge and train them in the above-mentioned areas; we feel certain topics in the present syllabus need to be supplemented and strengthened by inclusion of few additional topics. Areas that need to be introduced in syllabi have been identified as:

MSc Microbiology

- ≻ Extremophiles
- ≻ Bioinformatics
- ≻ Mathematical approach for Biologists
- ≻ Molecular tools for characterization and identification of bacteria
- ≻ Advanced Biochemistry techniques
- Advanced Molecular Biology Techniques
- Morphogenesis and organogenesis in plants
- ≻ Signal transduction
- \triangleright Techniques in Bio-nanotechnology

In addition, we feel that the students should be well acquainted with research methodology which includes different skill developments in scientific writing, data handling and processing, development of research ideas and planning / designing of research projects. The skill sets thus evolved will help the students in academic and applied research. This syllabus aims to give the student a significant level of theoretical and practical understanding of the subject.

Introduction:

With the changing scenario at local and global level, we feel that the syllabus orientation should be altered to keep pace with developments in the education sector. The need of the hour is proper syllabi that emphasize on teaching of technological as well as the administrative aspects of modern biology. Theory supplemented with extensive laboratory expertise will help these students, to avail these opportunities. Both these aspects i.e., theory and more of practical needs to be stressed, such that a post-graduate student can start work directly in applied fields (industry or institutions), without any additional training.

Thus, the university / college itself will be developing the trained and skilled manpower. We are restructuring the syllabus in this viewpoint. The restructured syllabus will combine the principles of chemistry and biological sciences (molecular and cell biology, genetics, immunology and analytical tools, biochemistry, biostatistics and bioinformatics) with technological disciplines to produce goods and services and for environmental management.

Microbiology curricula are operated at two levels viz. undergraduate and postgraduate. The

MSc Microbiology

undergraduate curricula are prepared to impart basic knowledge of the respective subject from all possible angles. In addition, students are to be trained to apply this knowledge particularly in day-to-day applications of Microbiology and to get a glimpse of research.

Objectives to be achieved:

- To enrich students' knowledge and train them in the pure microbial sciences
- To introduce the concepts of mathematics in biology
- To inculcate research aptitude
- To inculcate sense of scientific responsibilities and social and environment awareness
- To help students build-up a progressive and successful career in Microbiology

PROGRAM SPECIFIC OUTCOME

The Objectives of PG Microbiology are to get students familiarized to versatile tools and techniques employed in genetic engineering and recombinant DNA technology. They are introduced to the concepts of Mathematics in Biology. The objective is to inculcate research aptitude and carry out academic and applied research. They gain significant level of theoretical and practical understanding of recent trends in various fields of Microbiology. They gain an insight on Clinical, Pharmaceutical and Quantitative Microbiology; Molecular biology, Microbial Virus Technology, Molecular Biophysics, Advances in Microbial Technology, Industrial waste water treatment and industrial production of vaccines.

Evaluation Pattern:

For each Theory and Practical Course, 50-50 pattern will be followed. Internal assessment will be of 50 marks for a paper of 100 Marks. Internal assessment will be of 25 marks for a paper of 50 Marks. For Continuous Internal Evaluation (CIE), evaluation of theory courses will be done continuously. The 50 marks of Internal Evaluation shall be divided into the following:

- a) One Mid Semester Exams of 15 Marks each
- b) Two Class Tests of 15 marks each converted to 15 Marks
- c) One Presentation/Seminar/MCQ Test of 5 Marks
- d) One Group Discussion/Open Book Test of 5 or 10 Marks
- e) Class Assignments of 10 or 5 Marks
- f) A compulsory Mock Practical Examination and Viva Voce of practical subjects
- g) Internal marks for Journal / project report/ dissertation report completion and certification

	Course Structure: Semester I					
Course Type	Course Code	Course Name	Credits	A	ssessme	ent
				IA	UE	Total
Core	21SMMB111	Microbial Systematics	4	50	50	100
Compulsory	21SMMB112	Quantitative Biology	4	50	50	100
Theory Papers	21SMMB113	Biochemistry, Enzymology & Cell Biology	4	50	50	100
Choice Based	21SMMB114A	Fungal Systematics and Extremophiles	2	25	25	50
Optional Papers						
Elective/	21SMMB116A	Practicals Based on Fungal	2	25	25	50
Departmental	210111011	Systematics and Extremophiles	-			20
		OR				
Course						
	21SMMB114B	Experimental Design and Quantitative approaches for Biologists	2	25	25	50
	21SMMB116B	Practicals based on Experimental Design and	2	25	25	50
		Quantitative approaches for Biologists				
		OR			I	
	21SMMB114C	Protein chemistry and membrane transport	2	25	25	50
	21SMMB116C	Practicals Based on Protein chemistry and membrane transport	2	25	25	50
Core Compulsory Practical paper	21SMMB115	Biochemical Techniques (Practicals based on compulsory theory credits)	4	50	50	100

		Course Structure: Semester II				
Course Type	Course Code	Course Name		Assessment		
				IA	UE	Total
Core Compulsory Theory Papers	21SMMB121	Instrumentation and Molecular Biophysics	4	50	50	100
7 1	21SMMB122	Molecular Biology I	4	50	50	100
	21SMMB123	Biomolecules and Clinical	4	50	50	100
Choice Based Optional Papers Elective/	21SMMB124 A	Biochemistry Bioinformatics and Bio- nanotechnology	2	25	25	50
Departmental Course	21SMMB126 A	Practicals based on Bioinformatics and Bio- nanotechnology	2	25	25	50
		OR			1	
	21SMMB124B	Molecular Biology tools and applications	2	25	25	50
	21SMMB126B	Practicals based on Molecular Biology tools and applications	2	25	25	50
		OR				
	21SMMB124C	Respiration	2	25	25	50
	21SMMB126C	and Photosynthesis Practicals based on respiration and Photosynthesis	2	25	25	50
Core Compulsory Practical paper	21SMMB125	Molecular biology, metabolism and instrumentation Techniques (Practicals based on compulsory theory credits)	4	50	50	100

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

MSc I Syllabus

Semester I

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Microbial Systematics
Course Code	21SMMB111
Semester	Ι
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	To enrich students' knowledge related to basic concepts in	
	Microbial systematics	
2.	To inculcate the concepts of culturable and unculturable	
	bacteria	
3.	To make students acquainted with the concepts of microbial	
	diversity and evolution	

Sr. No.	Learning Outcome	
1.	Students will understand the concepts of Microbial systematics	
2.	Students will be able to study the diversity and unculturable bacteria	
	and evolution and bacterial systematics	
3.	Students will understand the concept and applications of concepts of	
	microbial diversity and evolution	

21SMMB111: Microbial Systematics

Core Compulsory Theory Paper

Total: 4 Credits

Workload: 15hrs /credit

Credit	Credit	Workload	
Number	Number		
I	Bacterial Systematics	15	
	1. Species concept in prokaryotes and eukaryotes		
	2. 5-Kingdom classification system		
	3. 3-Domain classification system		
	4. Determinative Bacteriology (Phenetic Approach)		
	5. Systematic Bacteriology (Phylogenetic Approach)		
	6. Polyphasic Approach		
	7. Molecular clocks, phylogeny and molecular distances		
	The origin of life (chemical and cellular evolution), ribosomal RNA		
	analyses for tracing microbial evolution, genetic basis of evolution,		
	evolution of physiological diversity. Taxonomy, binomial		
	nomenclature, types of bacterial classification systems, new		
	approaches to bacterial taxonomy (numerical taxonomy, ribotyping,		
	rRNA sequencing, fatty acid profile) Bergey's manual of systematic		
	bacteriology. Microbial diversity- molecular chronometers,		
	phylogenetic trees and three domain universal phylogenetic tree.		
II	Microbial Diversity	15	
	The expanse of microbial diversity		
	Estimates of total number of species		
	Species Divergence and the measurement of microbial Diversity.		
	Measures and indices of diversity		
III	Exploration of Un-culturable microbial diversity	15	
	1. Concept of 'unculturable' bacterial diversity.		
	2. Strategies for culture of 'unculturable' bacteria.		
	3. Culture independent molecular methods for identifying		
	unculturable bacteria (PCR, RFLP, ARDRA, DGGE, TGGE,		
	RAPD, Microarray, FISH, RISA)		
	4. Methods of extracting total bacterial DNA from a habitat and		
	metagenome analysis		
IV	Evolution	15	
	1. Evolution of antibiotic Spontaneous mutation controversy,		
	evolution of rates of mutation, types of selection, levels of selection,		
	group selection and selfish gene.		
	2. Socio-biology, kin selection, evolutionary stability of cooperation,		
	sociality and multi-cellularity in microorganisms, Game theory. Co-		
	evolutionary strategies, host parasite co-evolution		

3. Molecular evolution: origin of life, the origin of new genes and	
proteins. ageing, evolutionary trade-offs, r and k selection	

Suggested References:

1. Microbial Diversity: Form and Function in Prokaryotes, Published Online: 30 NOV 2007. DOI: 10.1002/9780470750490.ch1 Copyright © 2005 by Blackwell Science Ltd

2. Carl R. Woese. The archaeal concept and the world it lives in: a retrospective. Photosynthesis Research 80: 361 – 372, 2004. Kluver Academic Publishers.

3.Brown James. Principles of Microbial Diversity. ASM Press, 2014.

4. Ridley Mark (2004). Evolution. Blackwell Science Ltd.

5. Species Divergence and the measurement of microbial diversity. Catherine Lozupone and Rob Knight. FEMS Microbiol. Rev. 32 (2008) 557 – 578.

6. Methods of studying soil microbial diversity. Jennifer Kirk et al, (2004). Journal of Microbiological Methods 58, 169 - 188.

7. Keller M. and Zengler K. (2004) Tapping in to Microbial Diversity. Nature Reviews 2, 141-8. Pace N. (1997) A Molecular View of Microbial Diversity and the Biosphere, Science, 276, 734-740.

9. Woese C. (1987), Bacterial Evolution. Microbiological Reviews, 221-271.

10. Breed and Buchanan. Bergey's Manual of Determinative Bacteriology. 8th Edition, 1974.

11. Breed and Buchanan. Bergey's Manual of Determinative Bacteriology. 9th Edition, 1982.

12. Breed and Buchanan. Bergey's Manual of Systematic Bacteriology. 2nd Edition, (Volumes. 1 -5) (2001 -2003).

13. Sykes, G. and F. A. Skinner (Eds). Actinomycetales: Characteristics and Practical Importance. Society for Applied Bacteriology Symposium Series No. 2, Academic Press. 1973.

14. Jacquelyn G. Black (2013) Microbiology: Principles and Explorations, 6th Edition, John Wiley & Sons, Inc

15. Barnett, H. L. and Hunter, B. B. 1960. Illustrated Genera of Imperfect Fungi. Burgess Publishing Co., Minnesota.

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Quantitative Biology
Course Code	21SMMB112
Semester	Ι
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives	
1.	To enrich students' knowledge related to basic concepts in	
	Biostatistics	
2.	To inculcate the concepts of testing hypothesis using	
	parametric and non-parametric tests	
3.	To make students acquainted with the concepts of probability	
	distributions and their application	

Sr. No.	Learning Outcome	
1.	Students will understand the concepts of descriptive statistics	
2.	Students will be able to test the hypothesis and draw the conclusion	
	from the present data that will help them in research	
3.	Students will understand the concept and applications of probability	
	distributions	

21SMMB112 Quantitative Biology

Core Compulsory Theory Paper

Total: 4 Credits

Workload: 15hrs /credit

Credit No.	Credit	Workload
I	Descriptive Statistics	15
	 Fundamental concepts –Sample Statistics and Population parameter, data (qualitative and quantitative data, discrete and continuous series data), data sources, variables, measurement scales (nominal, ordinal, interval and ratio), variability and uncertainty in measurements Measures of central tendency – Mean Mode, median Measures of dispersion – Mean deviation, Standard deviation and Variance Data presentation-Tables and Graphs (Histogram, bar, pie and line) Simple linear Regression and correlation (<i>significance testing not necessary</i>) (Sr. No. 1:- only theory questions to be asked in exam. Sr. No. 2 – 5:- only problem solving questions to be asked in exam.) 	
II	Inferential Statistics-I	15
	 Uncertainty: Variation, Probability and inference Central Limit Theorem, Standard deviation of the means standard error and confidence interval The concepts of null hypothesis, alternate hypothesis, Test statistics, P-value significance level, type I and type II errors, one tailed and two tailed tests, degrees of freedom, statistical decision tree Parametric statistical test: Z-test, t-test and F-test (Sr. No 1 – 3:- only theory questions to be asked in exam except Z-test, T-test and F-test.) 	
III	Inferential Statistics-II	15
	 Test of Significance: Chi square test (Goodness of fit and Independence), Comparison of 3 or more samples – ANOVA One way and two way Nonparametric Tests: comparison to parametric tests, Run test, Sign test, Wilcoxon's signed rank test and Mann-Whitney U test, 	
IV	Probability and Probability Distribution	15
	 Concept of experiment, event (mutually exclusive & non-exclusive events, dependent & independent events); Laws of probability (addition and multiplication); Probability distribution – Normal (x-scale and z-scale), Binomial and Poisson distributions 	

MSc Microbiology

Suggested References:

- 1. Irfan Ali Khan and AtiyaKhanum, Fundamentals of Biostatistics. 3rd Ed. Ukaaz, Publications, Hyderabad
- 2. Norman T.J.Bailey Statistical methods in biology, 3rd Ed. Cambridge University Press
- 3. Goon, Gupta and Dasgupta Fundamentals of statistics, World Press, Kolkata.Lindgren B.W. Statistical Theory, Macmillan Publishing Co. Inc. 4. Wayne Daniel (2007)
- 4. Montgomery D.C. Design and analysis of experiments, John Wiley & Sons
- 5. Stephen Newman, Biostatistical methods in Epidemiology. Wiley Interscience Publication
- 6. Aviva Petrie and Carolene Sabin, 2005, Medical Statistics at a glance, 2nd Edition, Blackwell
- 7. Haefner James W. (1996) Modeling Biological Systems: Principles and Applications, Kluwer Academic Publications
- 8. David Brown & Peter Rothery. Models in biology: Mathematics, statistics, and computing John Wiley & Sons, USA
- 9. Practical Fermentation Technology Edited by Brian McNeil and Linda M. Harvey 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-01434-9
- 10. Bioprocess Engineering Principles by Pauline M. Doran (1995), Elsevier Science & Technology Books, ISBN: 0122208552

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Biochemistry, Enzymology & Cell Biology
Course Code	21SMMB113
Semester	Ι
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce the concepts of Nitrogen metabolism and protein
	chemistry
2.	To make students learn the concepts of Enzymology in depth
3.	To give students the knowledge of cell biology including the
	concepts of regulation of cell cycle cell death

Sr. No.	Learning Outcome
1.	Students will be acquainted with the concepts metabolic pathways
	involved in Nitrogen metabolism and protein chemistry
2.	Students will understand the concepts of enzymology with relation
	to inhibitors, allosterism and two substrate enzyme catalyzed
	reactions
3.	Students will get the knowledge of cells biology, protein trafficking,
	cell cycle regulation and cell death

21SMMB113: Biochemistry, Enzymology & Cell Biology

Core Compulsory Theory Paper

Total: 4 Credits

Workload: 15hrs /credit

Credit No.	Credit	Workload
Ι	Nitrogen metabolism	15
1	 a. Overview of Nitrogen metabolism b. Biochemistry of biological nitrogen fixation, properties of nitrogenase and its regulation c. Ammonia assimilation, glutamine synthetase, glutamate dehydrogenase, glutamate synthetase, their properties and regulation, d. Biosynthesis of amino acids and its allosteric regulation e. Biosynthesis of nucleotides: De novo pathway and Salvage pathway f. Degradation of purines and pyrimidines 	15
	g. Enzymes in biosynthesis of nucleotides as targets of	
II	chemotherapeutic agents Protein Chemistry:	15
	 a. Peptide linkage, partial double bond nature of peptide bond, Resonance forms of the peptide group, cis/trans isomers of peptide group b. Determination of primary structure of polypeptide (N-terminal, C-terminal determination, methods of sequencing of peptides) Problems based on this topic c. Super-secondary structure of proteins d. Ramachandran plot e. Significance of Metalloprotein, motor proteins and membrane proteins f. Concept of AMP(Antimicrobial peptides) 	
III	Enzymology	15
	 A. Kinetics of reversible inhibitions: a. Competitive, uncompetitive, non-competitive, substrate inhibition b. Primary and secondary plots, Determination of Ki using secondary plots. c. Significance of inhibitors B. King Altman approach to derive two substrate enzyme catalysed reactions C.Concept of allosterism: positive and negative co-operativity, models of allosteric enzymes (Monad, Wyamann and Changuax and Koshland, Nemethy and Filmer model), kinetics of allosteric enzyme, Hill plot, examples of allosteric enzymes and their significance in regulation. 	

IV	Cell biology	15
	A. Structural organization and function of	
	a. Endoplasmic Reticulum	
	b. Golgi apparatus	
	c. Nucleus	
	d. Mitochondrion	
	e. Lysosomes	
	f. Peroxisomes	
	B. Protein trafficking among various cellular compartments (by	
	secretory and cytosolic pathway: targeting to secretory vesicles,	
	cell membrane, lysosomes, nucleus, mitochondria and	
	peroxisomes)	
	C. Events in cell cycle and Regulation of cell cycle	
	d. Apoptosis: Intrinsic and Extrinsic pathway	

Suggested References:

1. Nelson D. L. and Cox M. M. (2002) Lehninger's Principles of Biochemistry, 4th edition, Mac MillanWorth Pub. Co. New Delhi.

2. Segel Irvin H. (1997). Biochemical Calculations. 2nd Ed. John Wiley and Sons, NY.

3. Garrett, R. H. and Grisham, C. M. (2004) Biochemistry. 3rd Ed. Brooks/Cole, Publishing Company, California.

4. Donald Voet (Author), Judith G. Voet (2011). Biochemistry, 4th Edition, Kindle Edition

5.Biochemistry by U. Satyanarayan and U. Chakrapani 5th edition

6. ENZYMES: Biochemistry, Biotechnology, Clinical Chemistry by Trevor Palmer

7. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd Edition by Robert A. Copeland

8. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. (2002) Molecular Biology of the Cell, 4th edition: Garland Science; New York

9. Metzler David E. (2001) Biochemistry: The chemical Reactions of Living Cells, Volume 1&2, Academic Press California.

10. H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, H. Ploegh, and P. Matsudaira, (2007) Molecular Cell Biology, Sixth Edition W. H. Freeman and Company, New York, , ISBN-13: 978-0-716-77601-7

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Fungal Systematics and Extremophiles
Course Code	21SMMB114 A
Semester	Ι
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students aware about the classification of fungi, along with their morphological characteristics.
2.	To make them understand the importance and applications of extremophiles.
3.	To teach them applications of Fungi in various Industries.

Sr. No.	Learning outcome
1.	Students will learn the methods of identification of fungi and to classify them.
2.	They will understand the techniques used for the isolation of extremophiles.
3.	Students will become capable for exploring fungi for industrial use

21SMMB 114A Fungal Systematics and Extremophiles

Choice based Optional Theory Paper (Elective)

Total: 2 Credits Workload: -15 hrs /credit

(Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

Credit No.	Credit	Workload
Ι	Fungal Systematics:	15
	 Six Classes of Fungi Differentiating characters among different Classes of fungi Importance of morphological characters in fungal differentiation and classification 	
II	Extremophiles	15
	 Enrichment, isolation, classification, properties and application of extremophiles: Thermophiles, Psychrophiles, Halophiles, Acidophiles, Methanogens Adaptation mechanisms of extremophiles 	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Fungal Systematics and Extremophiles
Course Code	21SMMB114 A
Semester	Ι
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students aware about the classification of fungi, along with their morphological characteristics.
2.	To make them understand the importance and applications of extremophiles.
3.	To teach them applications of Fungi in various Industries.

Sr. No.	Objectives
1.	To make the students understand the methods of identification of fungi and to classify them.
2.	To make them understand the techniques used for the isolation of extremophiles.

21SMMB116 A Practicals Based on Fungal Systematics and Extremophiles Choice based Optional Practical Paper (Elective)

Total: 2 Credits Workload: -30 hrs /credit

(Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

Credit No.	Credit	Workload
Ι	Fungal Systematics:	30
	 Isolation and identification of yeasts and saprophytic molds from natural samples. The identification key must be designed for each isolated and identified fungus. Students are expected to isolate at least one Genus from Mold and Yeast each (Varied types of samples should be processed to obtain representative isolate of the groups) 	
II	Extremophiles	30
	 2. Isolation and identification of the following extremophiles from natural samples: Acidophiles and Halophiles Identification of the bacteria to at least the Genus level using the Bergey's Manuals is expected. The identification key must be designed for each isolated and identified bacterium. Students are expected to isolate at least one Genus from each group. (At least 5 different types of samples should be processed to obtain isolates) 	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS- Autonomy 21 Pattern)

Course/ Paper Title Experimental Design and Quantitative approaches for Bio	
Course Code	21SMMB114B
Semester	Ι
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To introduce the concepts of research methodology
2.	To make students learn the concepts of mathematical models and their Applications
3.	To make them understand the concepts of epidemiological study and clinical trials

Sr. No.	Learning Outcome
1.	Students develop an interest in the field of research
2.	They understand the use of mathematical models in biological study
3.	Students understand the concepts and use of epidemiological studies and clinical
	trials and their application

21SMMB114B Experimental Design and Quantitative approaches for Biologists

Choice based Optional Theory Paper (Elective)

Total: 2 Credits Workload: -15 hrs /credit

(Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

Credit No.	Credit	Workload
Ι	Designing of Experiments	15
	 Research Methodology Sampling methods, sampling errors Survey design, DOE in Agriculture (randomization, replication and local control), designs-CRD, RCBD and LSD Factorial design (Full, Fractional and Plackett Burman) Epidemiological Study designs: Case control, cohort, concurrent, cross-sectional, retrospective/prospective Clinical/field trials-Randomization, Bias removal (Blinding – single & double), controlled and uncontrolled trials 	
II	Mathematical approach for Biologists	15
	 Presentation of experimental data (Tables, graphs and equations) Data Analysis (Trends, Testing mathematical models, Goodness of fit: Least Square Analysis, Linear and Non-linear models) Concept of mathematical model, need, modelling the system of interest, modelling the data Deterministic Vs Stochastic model, Cyclic processes of model construction, verification and Applications 	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practicals Based on Experimental Design and Quantitative approaches for Biologists
Course Code	21SMMB116B
Semester	Ι
No. of Credits	2

Aims & Objectives of the Course

Sr.	Objectives
No.	
1.	To teach the students to make mock research proposal
2.	To make students learn the concepts of mathematics for biologist and their
	applications
3.	To make them understand the concepts of survey designing and use of software in
	statistical analysis

Expected Course Specific Learning Outcome

Sr. No.	Learning Outcome
1.	Students become capable of writing a research proposal
2.	It develops the research aptitude in students
3.	Students the application of statistical surveys and use of various software in
	statistics

21SMMB116B Practicals based on Experimental Design and Quantitative approaches for

Biologists

Choice based Optional Practical Paper (Elective)

Total: 2 Credits Workload: -30 hrs /credit

(Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

Credit No.	Credit	Workload
Ι	Practicals based on theory credit Designing of experiments	30
	1. Designing of Mock Research Proposal which includes:a) Titleb) Hypothesis	

c) Review of Literatured) Methodology (Specify Statistical Methods)	
e) Possible outcomes (Statistical Interpretations)	
f) References	
Scientific writing should be followed for Research proposal	
2. Epidemiological study Proposal (<i>Mini Project</i>)	
a) Identification of Problem and Establishing Hypothesis	
b) Selection of Design	
c) Data Collection	
d) Data Analysis	
e) Data Presentation	
f) Conclusion	
Scientific writing should be followed for proposal	
3. Statistical Survey	
a) Identification of Problem and Establishing Hypothesis	
b) Survey Design (Questionnaire based)	
c) Preparation of Questionnaire	
d) Data Collection	
e) Data Analysis	
f) Data Presentation	
g) Conclusion of Survey	
(Actual statistical survey need to be carried out to demonstrate its	
mechanism)	
4. Factorial Study Design (Placket barmen, Fractional Factorial	
and full factorial) for Optimization of Media conditions	
a) Data collection from Research Papers/ Dissertations /Journals	
b) Data Treatment using Statistical Software's (Mini tab, SPSS and	
Design Expert)	
(Sr. no. 1 is compulsory, select any one from Sr. no.2 to 4)	
Practicals based on theory credit Mathematical approach for 30	
Biologists	
1. Numerical Microbiology Problem solving: Unit conversion,	
Numerical Problems on size, volume, number (CFU and PFU),	
dilutions, Neubauer chamber, direct microscopic count, Numerical	
Problems on Bacterial Growth. Numerical problems on diversity	
indices	
2 Computer applications: Using data sheets, and sorting data with	
different parameters, plotting graphs – bar charts, line graphs, pie	
charts, adding error bars. (Using Statistical Packages other than	
Microsoft Excel)	
3. Statistical analysis of data – Students t test, ANOVA, Chi square	
test, F test using computer software(Using Statistical Packages	
other than Microsoft Excel)	

M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Protein Chemistry and Membrane transport
Course Code	21SMMB 114C
Semester	Ι
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students acquainted with the concept of Membrane transport and signal Transduction
2.	To inculcate various concepts of protein purification
3.	To teach them to establish protein purification chart

Expected Course Specific Learning Outcome

Sr.	Learning Outcome
No.	
1.	Students understand the concepts of membrane transport and signal transduction with
	reference to signaling molecules and machinery
2.	Students understand the protein purification techniques and their application
3.	Students become able to establish enzyme purification chart and check purity of
	enzyme and efficiency of the process

21SMMB 114C Protein Chemistry and Membrane transport

Choice based Optional Theory Paper (Elective)

Total: 2 Credits Workload: -15 hrs /credit

(Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

Credit No.	Credit	Workload
Ι	Membrane transport and signal transduction	15
	The composition and architecture of membranes, Membrane dynamics,	

	Solute transport across membranes: Passive diffusion, facilitated transport, primary and secondary active transport using P, V and F type ATPases, Ionophores, Ion mediated transport, transport of ions across membranes (ion pumps), ligand and voltage gated ion channels, Liposomes and model membranes, Signal transduction pathways in bacteria, second messengers, regulation of signaling pathways, bacterial two-component systems, chemotaxis.	
II	Protein Purification and synthesis	15
	1. Cell disruption	
	2. Chromatographic methods	
	3. Electrophoresis	
	4. Chemical synthesis of peptides and proteins	
	5. Purification of proteins	
	6. Purification chart	

M. C. E. Society's Abeda Inamdar Senior College Of Arts, Science and Commerce, Camp, Pune-1

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practicals based on Protein chemistry and membrane transport
Course Code	21SMMB116C
Semester	Ι
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students study the concepts of osmosis and diffusion using artificial
	membranes
2.	To learn the to disrupt the microbial cells using various techniques
3.	To teach them calculations of enzyme activity, specific activity and establish enzyme purification chart

Sr. No.	Learning Outcome
1.	Students understand the concepts of diffusion and osmosis practically using artificial
	membranes and can relate to biological membranes
2.	Students learn to disrupt the microbial cells and purify the enzymes
3.	Students can establish the enzyme purification chart and check efficiency of
	purification process

21SMMB116CPracticals based on Protein chemistry and membrane transport

Choice based Optional Practical Paper (Elective)

Total: 2 Credits Workload: -30 hrs /credit

(Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

Credit No.	Credit	Workload
Ι	Membrane transport and signal transduction	30
	Study principles of osmosis and diffusion using artificial membranes (dialysis membrane) (explain how various physical and chemical factors affect the diffusion) Different methods of cell disruption. Swab evaluation with respect to transport of bacterial sample.	
II	Protein Purification and synthesis	30
	Protein purification (Amylase/ Invertase) using salt/ solvent precipitation Purification and establishment of purification chart	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Biochemical Techniques Core Compulsory Practical Paper
Course Code	21SMMB115
Semester	Ι
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students aware about SOPs of various instruments
2.	To make them familiar with different enzyme assays
3.	To teach them applications of computer

Sr. No.	Objectives
1.	Students will learn about preparation of biofertilizers and buffers
2.	Students will learn to isolate and identify organisms
3.	Students will be acquainted with production and purification of enzymes

21SMMB115: Biochemical Techniques Core Compulsory Practical Paper Core Compulsory Practical Paper Total: 4 Credits Workload: -30 hrs /credit (Total Workload: - 4 credits x 30 hrs = 120 hrs in semester

1. Disposal of chemicals and cultures, recording of scientific experiments. Standardization of laboratory procedures, calibration and validation of instruments and preparing / designing SOP for the same, maintenance of instruments.

2. Buffer: Determination of pKa of a monoprotic weak organic acid; pI

3. Computer applications: Using data sheets, and sorting data with different parameters, plotting graphs – bar charts, line graphs, pie charts, adding error bars. (Using Microsoft Excel) Statistical analysis of data – Students t test, ANOVA, Chi square test, F test using computer software (Using Microsoft Excel)

4. Enrichment, Isolation and identification of the extremophiles from natural samples: Alkaliphiles and Thermophiles.

Identification of the bacteria to at least the Genus level using the Bergey's Manuals. The identification key must be designed for each isolate.

11. Preparation of bio fertilizer

12. Production, purification and quantification of bacterial/ fungal amylase/ protease.

7. Enzyme assay:

- a) Determination of Km and Vm of purified enzyme.
- b) To assess effect of pH on enzyme activity.
- c) To assess effect of enzyme conc.
- d) To assess temperature stability of the enzyme.
- e) To assess effect of activator on enzyme activity.
- f) To assess effect of inhibitor on enzyme activity

8. Colorimetry and spectrophotometry: Estimation of above extracted sample: UV Spectrophotometry (purity using A280 method).

9. Ion Exchange Chromatography of Protein

10. Electrophoresis: SDS-PAGE of above extracted proteins / To determine the ion-exchange

MSc Microbiology

capacity and nature of given resin using anion exchange chromatography.

11. Interpretation of Ramachandran Plot and study of conformations of protein molecule using Molecular Graphics Visualization Tool (e.g., Swiss PDB)

M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

Semester II

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Instrumentation and Molecular Biophysics
Course Code	21SMMB121
Semester	II
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To enrich students' knowledge related to basic concepts in
	Instrumentation and Molecular Biophysics
2.	To inculcate the concepts of instrumentation including
	FTIR,NMR and X-Rays
3.	To make students acquainted with the concepts of biophysics
	and instrumentation

Sr. No.	Learning Outcome
1.	Students will understand the concepts of Instrumentation and
	Molecular Biophysics
2.	Students will be able to understand both fundamentals and
	applications of the instruments that are routinely used for the
	characterization of biomolecules.
3.	Students will understand the concept and applications of instruments

21SMMB121: Instrumentation and Molecular Biophysics

Total: 4 Credits

Workload: -15 hrs /credit

Credit	Credit	Workload
No.		
Ι	Separation and analysis of biomolecules	15
	 Techniques for sample preparation: Dialysis, ultra-filtration, centrifugal vacuum concentration Chromatography- Partition Coefficient, Selectivity, Resolution, Column Efficiency, Van Deemter equation, Interpretation of chromatograms, Principle, instrumentation and applications of High- Performance Liquid Chromatography (HPLC), Fast Protein Liquid Chromatography (FPLC), Supercritical Fluid Chromatography, Reversed Phase Chromatography and Gas chromatography. Electrophoresis Methods: Pulse field gel electrophoresis, capillary electrophoresis, isoelectric focusing, 2-dimensional electrophoresis, immune-electrophoresis 	
II	Spectroscopy	15
	 Introduction: Electromagnetic spectrum, Atomic orbitals, Molecular orbitals, Electronic, Rotational and Vibrational transitions in spectroscopy, Interpretation of spectra. 1. UV/Visible spectroscopy- Instrumentation, Molar Absorptivities, Beer and Lamberts Law, Bathochromic and hypochromic shifts. 2. Fluorescence spectroscopy- Instrumentation, Quantum Yield, Quenching, FRET, Binding and Folding studies, Flow cytometry and FACS 3. Infrared spectroscopy- Principle, Instrumentation, Absorption bands, FTIR and its applications 4.Mass spectroscopy- Principles of operation, Ionization, Ion fragmentation, Mass Analysers, GC-MS, MALDI-TOF 	
III	Biophysical Techniques	15
	 NMR spectroscopy: Basic Principles of NMR, Chemical shift, Intensity, Line width, Relaxation parameters, Spin coupling, Nuclear Overhauser Effect Spectroscopy, Correlation Spectroscopy, Approach to structure determination by 2D-NMR X-ray crystallography: Purification of proteins, Crystallization of proteins, Instrumentation, acquisition of the diffraction pattern, basic principles of x-ray diffraction, Crystal Structures (Bravais Lattices), Crystal planes and Miller Indices, Fourier Transform and Inverse Fourier, Direct Lattice 	
IV	Gene sequencing	15

Objectives of gene sequencing	
Challenges in gene sequencing	
Vectors used in gene sequencing	
Outline of gene sequencing procedures like	
Maxam Gilbert's method, Sanger's method, Pyro	osequencing, Ion torrent
Isolation of DNA	
Amplification of DNA by PCR	
Gel electrophoresis	
Automated Sequencer	
BLAST analysis	
DNA-DNA Hybridization methods	
Strategies for whole genome sequencing	
Whole Genome Shotgun Sequencing	
Applications of gene sequencing (identification of	of organisms

Suggested References:

1. Wilson Keith and Walker John (2005) *Principles and Techniques of Biochemistry and Molecular Biology*, 6th Ed.Cambridge University Press, New York.

 Rolf Ekman, Jerzy Silberring, Ann Westman-Brinkmalm, AgnieszkaKraj (2009) Mass spectrometry: instrumentation, interpretation, and applications, John Wiley &Sons,Inc.,Canada.
 Irwin H. Segel (1976) Biochemical Calculations: How to SolveMathematical Problems in General Biochemistry, 2nd Edition.John Wiley & Sons.

4. Mount, D. W. (2001) *Bioinformatics: sequence and genomeanalysis*. Cold Spring Harbor Laboratory Press, New York.

5. David M Webster (2000) *Protein Structure Prediction-Methods and Protocols*, Methods In Molecular Biology Vol143 Humana Press.

6. Narayanan, P. (2000) Essentials of Biophysics. New Age International Publication, New Delhi.7. Clive Dennison (2002) A guide to protein isolation, Kluwer Academic Publishers

8. Pattabhi, V. and Gautham, N. (2002) *Biophysics*. Kluwer Academic Publishers, New York and Narosa Publishing House, Delhi.

9. David J Holme, Hazel Peck (1998) *Analytical Biochemistry*, 3rd Ed. Prentice Hall, Pearson Education Limited, Harlow England.

10. Rodney F. Boyer (2000) Modern Experimental Biochemistry3d edition., Benjamin Cummings.

11. Nölting, B. (2006) Methods in modern biophysics. Second Edition. Springer, Germany.

12.Chakravarty, R., Goel, S., &Cai, W. (2014). Nanobody: The "Magic Bullet" for Molecular Imaging? Theranostics, 4(4), 386-398. doi:10.7150/thno.8006.

13. Christof M. Niemeyer and Chad A. Mirkin (2006)*Nanobiotechnology*, John Wiley & Sons. **14.** Daniel L. Feldheim and Colby A. Foss, Jr. (2002) *Metalnanoparticles synthesis and characterization and applications* Marcel Dekker, Inc.

15. Mahendra Rai and Nelson Duran (2011) *Metal nanoparticles inMicrobiology*, Springer Verlag Berlin Heidelberg

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Molecular Biology I
Course Code	21SMMB122
Semester	П
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students aware about genomics and proteomics
2.	To make them familiar with various techniques used for molecular diagnostics
3.	To teach them applications of molecular techniques

Expected Course Specific Learning Outcome

Sr. No.	Objectives
1.	Students will learn about proteomics and its applications
2.	Students will learn about genomics and its applications
3.	Students will be acquainted with the latest molecular biology techniques and their applications

21SMMB 122 Molecular Biology I

Total: 4 Credits

Workload: -15 hrs /credit

Credit	Credit	Workload

No.		
Ι	Genomics	15
	A. Gene sequencing, conserved genes, finding base sequences which	
	form genes	
	B. Many proteins from one gene, alternative gene expression: DNA	
	imprinting and Epigenetics	
	C.Genomic variation-SNPs, SNPS and diseases, SNPS detection and	
	medical therapies. Eukaryotic and prokaryotic SNPs	
	D.Role of genomic variation in aging, Recognition of trades offs associated with genomic variation	
II	Proteomics	15
		10
	a) Basic concept of proteomics	
	b) Expression, Analysis and Characterization of Proteins	
	c) Analysis of protein structure	
	d) Protein interaction.	
	e) Basic concept of Metabolomics with examples and global biochemical networks	
ш	Mobile DNA elements	15
	Transposable elements in bacteria, IS elements, composite transposons,	
	Integrons.	
	Replicative, nonreplicative transposons, and Mu transposition	
	Controlling elements in Tn A, Tn 5 and Tn 10 transposition	
	Transposons in maize and Drosophila	
	Retroviruses and retrotransposon, Ty elements in yeasts	
	SINES, LINES and Alu elements.	
TT 7	Significance of transposons and Integrons.	15
IV	Molecular diagnostics and applications	15
	Protein arrays to detect polygenic diseases, Immunoassay for protein	
	confirmation-specific disorders	
	Detection of diseases-associated changes in gene expression using	
	microarray	
	Detection of RNA signatures of Antibiotic Resistance in Bacteria	
	Detection of miRNA signatures of Cancer	

Suggested References

1. Benjamin Lewin. (2008) Genes IX, Jones and Bartelett Publishers Inc.

2. S.B Primrose and R M Twyman 2006 7th edition. Blackwell publishing

3. James D. Watson, Tania Baker, Stephen P. Bell, Alexander Gann,

4. Michael Levine, Richard Loswick (2004) *Molecular Biology of the Gene*, 5th Edition, Pearson Education, Inc. and Dorling Kindersley Publishing, Inc.

5. Molecular Biology of the Cell, Bruce Albert et. al., 6th Ed., Garland Sciences.

6. Molecular Biology, Loddish et. al., 7th Edn, W. H. Freeman, 2012

7. Weaver R., (2007) Molecular Biology, 4th Edition, McGrew Hill Science

8. B.R.Glick, J.J Pasternak J. J. (1998) Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington D C, ASM Press. 3rd Ed

9. Genomes. 2nd edition, Brown TA, Oxford: Wiley-Liss; 2002

10. Gene Therapy Tools and Potential Applications- Francisco Martin Molina (2013) JanezaTrdine 9, 51000 Rijeka, Croatia (online book)

11. Worgall S. and R. G. (2014) Gene Therapy In: Principles of Tissue Engineering (Fourth Edition). Academic Press: United States. Chapter 34. 657-686.

12. Maghari B. M. and Ardekani A.M. (2011) Genetically modified foods and social concerns. Avicenna J Med Biotechnol. 3(3):109-17.

13. Ormandy E.H., Dale J. and Griffin G. (2011) Genetic engineering of animals: ethical issues, including welfare concerns. Can Vet J. 52(5):544-50.

14. http://onlinelibrary.wiley.com/doi/10.1576/toag.12.1.037.27556/

15.http://www.nature.com/nrg/journal/v13/n7/full/nrg3230.html

16.http://www.ncbi.nlm.nih.gov/pubmed/20920744

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Biomolecules and Clinical Biochemistry
Course Code	21SMMB123
Semester	II
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students understand the regulatory pathways in
	Metabolism
2.	To inculcate the concepts of antimicrobial resistance
	mechanisms in bacteria with emphasis on their signaling
	pathways
3.	To give students the knowledge of microvirulane in bacteria,
	virus and fungi

Sr. No.	Learning Outcome
1.	Students will possess the knowledge of the regulation of
	Metabolism
2.	Students will understand the antimicrobial resistance mechanisms in
	bacteria with emphasis on their signaling pathways
3.	Students will be acquainted with the concepts of microvirulane in
	bacteria, virus and fungi

21SMMB123 Biomolecules and Clinical Biochemistry

Core Compulsory Theory Paper

Total: 4 Credits

Workload: 15hrs /credit

Credit	Credit	Workload
No.		
Ι	Regulation of Carbohydrate, Proteinand Lipid Metabolism	15
	Regulation of Carbohydrate Metabolism:	
	a. Glycogenesis	
	b. Glycogenolysis	
	c. Glycolysis	
	d. Gluconeogenesis	
	e. TCA	
	f. ETC	
	Regulation of Lipid Metabolism:	
	a. Fatty acid synthesisb. Beta oxidation	
	Regulation of Protein Metabolism:	
	a. Urea cycle	
	Central metabolic pathway	
II	Communication in prokaryotic and eukaryotic system	15
	A. Communication and coordination in prokaryotes	
	i. Life cycle and Molecular mechanism of quorum sensing in	
	Myxobacteria	
	ii. Quorum sensing in Gram positive (Staphylococcus aureus virulence	
	factors) and Gram-negative bacteria (Vibrio fischerilux operon)	
	iv. Secretory systems in bacteria, competence development, sporulation	
	B.Communication and coordination in eukaryotes	
	i.Life cycle and Molecular mechanism of quorum sensing in	
	Dyctiosteliumdiscoidum.	
	ii. Signaling in higher eukaryotes: autocrine, paracrine, endocrine,	
	neurotransmitters	
	iii. Pathways in cell signaling: GPCRs-	
	a. Adenylatecyclase pathway	
	b. Regulation of cytosolic Ca ²⁺	
III	Antimicrobial resistance mechanisms in Bacteria	15
	Antimicrobial resistance mechanisms in Bacteria with respect to:	
	1. Biofilm	
	2. Efflux Pump	
	3. Alteration in target site	
	4. Inactivation of enzyme	

	 5. Alternative pathway or enzyme 6. Formation of persister cells Special emphasis on ESKAPE group of pathogens and <i>Mycobacterium</i> <i>Tuberculosis</i> 	
IV	Mechanisms of microbialvirulence	15
	Regulation of Bacterial Virulence – Sigma factor and two component system Regulation of Viral Virulence- Viral adhesins, antigenic variation in viruses Regulation of FungalVirulence	

References:

- 1. Nelson D. L. and Cox M. M. (2002) Lehninger's Principles of Biochemistry, 4th edition, Mac Millan Worth Pub. Co. New Delhi.
- 2. Segel Irvin H. (1997). Biochemical Calculations. 2nd Ed. John Wiley and Sons, NY.
- 3. Garrett, R. H. and Grisham, C. M. (2004) Biochemistry. 3rd Ed. Brooks/Cole, Publishing Company, California.
- 4. Donald Voet (Author), Judith G. Voet (2011). Biochemistry, 4th Edition, Kindle Edition
- 5. Biochemistry by U. Satyanarayan and U. Chakrapani 5th edition
- 6. Toole 'O' George, H. B. Kaplan, R. Kolter, (2000) Biofilm formation as

microbial development Annual Review of Microbiology, Vol. 54, 49-79 4.

- Melissa B. Miller and Bonnie L. Bassler (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol. Vol. 55, 165–99.
- Christopher M. Waters and Bonnie L. Bassler (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. Vol. 21, 319–346.
- Alternative Sigma Factors and Their Roles in Bacterial Virulence Mark J. Kazmierczak, Martin Wiedmann, and Kathryn J. Boor* MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Dec. 2005, p. 527–543
- Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens Kirk W. Deitsch, Sheila A. Lukehart, and James R. Stringer Nat Rev Microbiol. 2009 July ; 7(7): 493–503. doi:10.1038/nrmicro2145.

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Bioinformatics and Bio-nanotechnology
Course Code	21SMMB124A
Semester	II
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students understand the Bioinformatics
2.	To inculcate the concepts of bionanotechnology
3.	To give students the knowledge of Bio-nanotechnology and Bioinformatics

Sr. No.	Learning Outcome
1.	Students will possess the knowledge of Bioinformatics
2.	Students will understand Bio-nanotechnology
3.	Students will be acquainted with the concepts of Bio-
	nanotechnology and Bioinformatics

21SMMB124A: Bioinformatics and Bio-nanotechnology

Choice based Optional Theory Paper (Elective)

Total: 2 Credits Workload: -15 hrs /credit

(Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

Credit No.	Credit	Workload
Ι	Bioinformatics	15
	 Introduction and biological databases Nucleic acid, proteins, genomes— structure data bases, search engines, sequence data forms and submission tools, scoring matrices for sequence alignments, algorithms pairwise sequence alignments, database similarity searches-BLAST, FASTA Gene bank sequence database; submitting DNA sequences to databases and database searching; sequence alignment; pairwise alignment techniques, Multiple sequence alignment, phylogenetic analysis and tree building methods, motif searches, epitope prediction, data mining tools and applications, promoter and gene prediction, comparative analysis Demonstration of databases (GENBANK, PDB, OMIM) and software (RASMOL, Ligand Explorer) 	
II	Techniques in Bio-nanotechnology	15
	 Biogenic nanoparticles – Synthesis and applications. Magnetotactic bacteria for natural synthesis of magnetic nanoparticles; Role of plants in nanoparticle synthesis. Significance of the physical properties of nanoparticles Characterization of nanoparticles Dynamic Light Scattering (DLS), EDAX analysis, Zeta analysis Imaging techniques to characterize nanoparticles: Principle, instrumentation and applications of TEM (Transmission Electron Microscope) SEM (Scanning Electron Microscope) 	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practicals based on Bioinformatics and Bio-	
	nanotechnology	
Course Code	21SMMB126A	
Semester	II	
No. of Credits	2	

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students understand the Bioinformatics
2.	To inculcate the concepts of bionanotechnology
3.	To give students the knowledge of Bio-nanotechnology and
	Bioinformatics

Expected Course Specific Learning Outcome

Sr. No.	Learning Outcome
1.	Students will possess the knowledge of Bioinformatics
2.	Students will understand Bio-nanotechnology
3.	Students will be acquainted with the concepts of Bio- nanotechnology and Bioinformatics

21SMMB126A: Practicals based on Bioinformatics and Bio-nanotechnology

Choice based Optional Practical Paper (Elective)

Total: 2 Credits Workload: -30 hrs /credit

Credit No.	Credit	Workload
Ι	Bioinformatics	30
	 16S rRNA gene sequencing analysis of bacteria: Isolation, purity checking using A260/A280 ratio and Agarose gel electrophoresis of isolated chromosomal DNA of bacteria Demonstration of the following steps, if not possible to perform in your lab: PCR product Sequencing using automated sequencer 	
II	Bionanotechnology	30
	 1.Biological synthesis of nanoparticles (at least 2 types) using actinomycetes /fungi /yeast and their characterization by UV-Vis spectroscopy Characterisation of nanoparticles, Antimicrobial activity, dye decolorization activity, etc 2. Biological synthesis of nanoparticles(at least 2 types) using plant material/plant extract Extract preparation Synthesis of nanoparticles Characterization by UV-Vis spectroscopy, Characterization of nanoparticles, Antimicrobial activity, dye decolorization activity, etc 3. Nanoparticle characterization data analysis(data to be obtained from scientific literature) 4. SEM/TEM/AFM images,FTIR scan, DLS,zeta potential, etc. 	

(Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy	21	Pattern)
------------------	----	----------

Course/ Paper Title	Molecular Biology tools and applications
Course Code	21SMMB124B
Semester	Π
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students aware about Recombinant DNA Technology
2.	To make them familiar with various techniques used for molecular diagnostics
3.	To teach them applications of molecular techniques

Sr. No.	Objectives
1.	Students will learn about Recombinant DNA Technology
2.	Students will learn about applications of recombinant DNA Technology
3.	Students will be acquainted with the latest molecular biology techniques and their applications

21SMMB124B: Molecular Biology tools and applications Choice based Optional Theory Paper (Elective) Total: 2 Credits

Workload: -15 hrs /credit (Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

Credit No.	Credit	Workload
Ι	Tools and techniques in Molecular Biology	15
	 Study of protein-DNA interactions: electrophoretic mobility shift assay; DMS foot printing, DNase foot printing; methyl interference assay and its modifications, nested PCR, Hot start PCR, RT –PCR and Real time PCR (Q –PCR) Applications of PCR. DNA microarray, Construction of microarrays – genomic arrays, cDNA arrays and oligo arrays. Applications of microarray Super shift assay, Sequence tagged sites, Filter binding assay, Protein foot printing, finding the replicon, DNA fingerprinting, Measuring transcription rates Hybridization techniques: Free solution, membrane based (DOT blot, SLOT blot). CRISPR-Cas system: Technology and Applications 	
II	Applications of recombinant DNA technology	15
	 Application of RDT in Production of Secondary Metabolites Synthesis of commercial products: Amino acids (L-Valine and L-cysteine), ascorbic acid, Polyketide antibiotics, Hybrid Human-Mouse monoclonal antibodies, Human monoclonal antibodies, anticancer antibodies Biopolymers: gum, rubber, polyhydroxyalkanoates. Un-conventional microbial systems for production of high-quality protein drugs. 	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practical Based on Molecular Biology tools and applications
Course Code	21SMMB126B
Semester	II
No. of Credits	2

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students aware about transformation
2.	To make them familiar with various techniques used for molecular diagnostics
3.	To teach them applications of molecular techniques

Sr. No.	Objectives
1.	Students will learn about blue white screening and GFP
2.	Students will learn about molecular biology recent techniques
3.	Students will be acquainted with the latest molecular biology techniques and their applications

SMMB126B: Practical Based on Molecular Biology tools and applications

Choice based Optional Practical Paper (Elective) Total: 2 Credits Workload: -30 hrs

Credit No. Workload Credit Ι Cloning and transformation using plasmid vectors- GFP 30 gene cloning /blue and white screening Vector and Insert Ligation, Preparation of competent cells Transformation of E. coli with standard plasmids Calculation of transformation efficiency PCR amplification and purification of 16S rRNA gene Π 30 PCR Primer Design 4. Protoplast fusion 5. Activity staining analysis (Zymograms) (NATIVE PAGE) 6. FTIR analysis of a biomolecule/recombinant molecule (at least five different molecules) 7. Production by recombinant strain and estimation of **Biopolymers:** a) Gum b) Poly hydroxyalkanoates (PHB)

/credit (Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

M. C. E. Society's

Abeda Inamdar Senior College

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Microbial respiration, Photosynthesis and developmental Biology
Course Code	21SMMB124C
Semester	II
No. of Credits	2

Aims & Objectives of the Course

Sr.	Objectives
No.	
1.	To make students study the concepts of anaerobic respiration
2.	To learn the organization and mechanism of photosynthesis
3.	To make them understand developmental biology in vertebrates, invertebrates and
	plants

Expected Course Specific Learning Outcome

Sr. No.	Learning Outcome
1.	Students understand the concepts and mechanism of anaerobic respiration
2.	Students learn the photosystems and photosynthetic pathways
3.	Students get acquainted with the concepts of developmental biology

21SMMB124CMicrobial respiration, Photosynthesis and developmental Biology Choice based Optional Theory Paper (Elective)

Total: 2 Credits

Workload: -15 hrs /credit (Total Workload: - 2 credits x 15 hrs = 30 hrs in semester)

Credit	Credit	Workload
No.		
Ι	Respiration and Photosynthesis	15
	Anaerobic Respiration: Concept of anaerobic respiration, oxidized sulfur compounds, and nitrate as electron acceptor with respect to electron transport chain and energy generation, Biochemistry of methanogens. Photosynthesis:	

	 Organization of photosystem I and II, cyclic and non-cyclic flow of electrons, Z scheme, Hill reaction, photolysis of water C3, C4 CAM plants, Photorespiration, Regulation 	
II	Developmental Biology	15
	Introduction to developmental biology Conserved nature of development, Concepts of commitment, determination and differentiation, Morphogen gradients in developmental regulation, Hox code, MPF Gastrulation and cellular movements involved in it, Organizer and its importance giving examples of invertebrates (<i>Drosophila</i>) and vertebrate (<i>Xenopus</i>) model systems, pattern formation in body axis, antero-posterior and dorso-ventral polarity. Morphogenesis and organogenesis in plants: Organization of shoot and root apical meristem; shoot and root development; transition to flowering, floral meristems and floral development in <i>Arabidopsis</i> .	

M. C. E. Society's **Abeda Inamdar Senior College** Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy 21 Pattern)

Course/ Paper Title	Practicals based on Microbial respiration, Photosynthesis and developmental Biology
Course Code	21SMMB126C
Semester	II
No. of Credits	2

Aims & Objectives of the Course

Sr.	Objectives
No.	
1.	To teach the students the methods for isolation of Sulphur reducers and
	methanogens
2.	To make them learn isolation and characterization of algae and determination of
	chlorophyll pigment
3.	To demonstrate the stages of embryonic development

Expected Course Specific Learning Outcome

Sr. No.	Learning Outcome	
1.	Students become capable of isolation of Sulphur reducers and methanogens and characterize them	
2.	Students learn to isolate, characterize and determine chlorophyll content in algaeS	
3.	Students get aware about the developmental stages of animals and plants	

21SMMB126C:Practicals based on Microbial respiration, Photosynthesis and

developmental Biology

Choice based Optional Practical Paper (Elective) Total: 2 Credits Workload: -30 hrs

/credit (Total Workload: - 2 credits x 30 hrs = 60 hrs in semester)

Credit No.	Credit	Workload
Ι	Respiration and Photosynthesis	30
	1. Enrichment, Isolation and characterisation of Sulphur reducing bacteria/Methanogens.	
	2. Enrichment, Isolation and characterization of Cyanobacteria.	

	3.Detection of chlorophyll-a activity of Cyanobacteria	
II	Developmental Biology	30
	Demonstration of mounting of embryos (frog and fruit fly) at various developmental stages on permanent slides Observation of stages of development in <i>Arabidopsis</i>	

Of Arts, Science and Commerce, Camp, Pune-1 (Autonomous) Affiliated to Savitribai Phule Pune University NAAC accredited 'A' Grade

(CBCS – Autonomy	21	Pattern)
------------------	----	----------

Course/ Paper Title	Molecular Biology, Enzymology and
	Instrumentation Techniques
Course Code	21SMMB125
Semester	П
No. of Credits	4

Aims & Objectives of the Course

Sr. No.	Objectives
1.	To make students aware about enzymology, molecular biology and instrumentation
2.	To make them familiar with various techniques used for biofilm formation, Curing of bacterial Plasmid etc
3.	To teach them applications of molecular techniques, gene annotation

Sr. No.	Objectives
	Students will learn about phylogenetic tree using related sequences and BLAST analysis
2.	Students will learn about Scientific Communication and Research Methodology
3.	Students will be acquainted with EPS, its extraction and estimation

21SMMB125:Molecular Biology, Enzymology and Instrumentation Techniques Core Compulsory Practical Paper

Total: 4 Credits Workload: -30 hrs /credit

(Total Workload: - 4 credits x 30 hrs = 120 hrs in semester

1. Concept of lac-operon: Lactose induction of Beta galactosidase; Glucose Repression; Diauxic growth curve of *E. coli*.

2. Crystal violet assay for estimation of biofilm formation

3. Bioassay for determination of quorum sensing signals produced by bacteria.

4. Determination of chemo-taxis responses shown by bacteria using agar plate or capillary tube method.

5. Efflux pump inhibition assay

6. Curing of bacterial Plasmid

7. Gene annotation

8. Sequence matching by BLAST analysis

9. Drawing phylogenetic tree using related sequences (Using standard software like Phylip, Mega etc)

Extraction of Protein and Exo-polysaccharide from bacterial culture (TCA and ethanol method)
 Scientific Communication and Research Methodology

Concept of effective communication: Presentation skills, formal scientificpresentation skills; Preparing power point presentation, Presenting the work, Scientific poster preparation &oral presentation; Participating in groupdiscussions. Technical writing skills: Types, Formats of scientific reports, scientificwriting skills, Significance of communicating science, ethical issues, copyrights and plagiarism, Components of a research paper, publishing scientificpapers - peer review process and problems. Use of search engines for scientific data mining, use of reference, use of reference management tools (e.g., Zotero).

(Assignment/activity-based teaching method may be used)

12. Virtual lab exercise to understand the instrumentation, experimentation and interpretation of data obtained using HPLC, FACS, FTIR, GC-MS, NMR, X-Ray crystallography MALDI TOF, SEM, TEM, AFM, Confocal Microscope (representative websites)

13. Visit to any lab or institute to understand the principle and working of the bio-analytical instrument studied in theory courses (optional).